scispace - formally typeset
Open AccessJournal ArticleDOI

Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins.

TLDR
It is shown that expression of the NDV V protein or the Nipah virus V, W, or C proteins rescues NDV-GFP replication in the face of the transfection-induced IFN response, and that the NDVs could be used to screen proteins expressed from plasmids for the ability to counteract the host cellIFN response.
Abstract
We have generated a recombinant Newcastle disease virus (NDV) that expresses the green fluorescence protein (GFP) in infected chicken embryo fibroblasts (CEFs). This virus is interferon (IFN) sensitive, and pretreatment of cells with chicken alpha/beta IFN (IFN-α/β) completely blocks viral GFP expression. Prior transfection of plasmid DNA induces an IFN response in CEFs and blocks NDV-GFP replication. However, transfection of known inhibitors of the IFN-α/β system, including the influenza A virus NS1 protein and the Ebola virus VP35 protein, restores NDV-GFP replication. We therefore conclude that the NDV-GFP virus could be used to screen proteins expressed from plasmids for the ability to counteract the host cell IFN response. Using this system, we show that expression of the NDV V protein or the Nipah virus V, W, or C proteins rescues NDV-GFP replication in the face of the transfection-induced IFN response. The V and W proteins of Nipah virus, a highly lethal pathogen in humans, also block activation of an IFN-inducible promoter in primate cells. Interestingly, the amino-terminal region of the Nipah virus V protein, which is identical to the amino terminus of Nipah virus W, is sufficient to exert the IFN-antagonist activity. In contrast, the anti-IFN activity of the NDV V protein appears to be located in the carboxy-terminal region of the protein, a region implicated in the IFN-antagonist activity exhibited by the V proteins of mumps virus and human parainfluenza virus type 2.

read more

Citations
More filters
Journal ArticleDOI

Selection characterization on overlapping reading frame of multiple-protein-encoding P gene in Newcastle disease virus.

TL;DR: Interestingly, in the common P-V/V-P function, variability of V1 was compensated by a higher conservation of the corresponding P1, and conversely for the P2/V2, which suggested that the flexibility of one ORF with less function served the purpose of allowing positive selection in the other overlapping ORF that exhibited more function.
Journal ArticleDOI

Interactions of the Nipah Virus P, V, and W Proteins across the STAT Family of Transcription Factors.

TL;DR: It is demonstrated that the common N-terminal residues 114 to 140 of P, V, and W are critical for inhibition ofSTAT1 and STAT4 function, map the interaction to the SH2 region of STAT1, and show that a fusion construct with this peptide significantly inhibits cytokine-induced STAT1 phosphorylation.
Journal ArticleDOI

The ubiquitin-like protein PLIC-1 or ubiquilin 1 inhibits TLR3-Trif signaling.

TL;DR: The results suggest that PLIC-1 is a novel inhibitor of the TLR3-Trif antiviral pathway by reducing the abundance of Trif.
Journal ArticleDOI

Rescue and characterization of recombinant cedar virus, a non-pathogenic Henipavirus species.

TL;DR: The recombinant Cedar virus platform may be utilized to characterize the determinants of pathogenesis across the henipaviruses, investigate their receptor tropisms, and identify novel pan-henipavirus antivirals.
Journal ArticleDOI

Recombinant lentogenic Newcastle disease virus expressing Ebola virus GP infects cells independently of exogenous trypsin and uses macropinocytosis as the major pathway for cell entry

TL;DR: The results demonstrate that EBOV GP in recombinant NDV particles functions independently to mediate the viral infection of the host cells and alters the cell-entry pathway.
References
More filters
Journal ArticleDOI

Efficient selection for high-expression transfectants with a novel eukaryotic vector

TL;DR: The results showed that high concentrations of G418 efficiently yielded L cell and CHO cell transfectants stably producing IL-2 at levels comparable with those previously attained using gene amplification.
Journal ArticleDOI

Nipah Virus: A Recently Emergent Deadly Paramyxovirus

TL;DR: Electron microscopic, serologic, and genetic studies indicate that the Nipah virus belongs to the family Paramyxoviridae and is most closely related to the recently discovered Hendra virus, and it is suggested that these two viruses are representative of a new genus within the familyparamyxviridae.
Journal ArticleDOI

Influenza A Virus Lacking the NS1 Gene Replicates in Interferon-Deficient Systems

TL;DR: In this paper, a viable transfectant influenza A virus (delNS1) which lacks the NS1 gene has been generated through the use of reverse genetics, and it has been shown that the NS 1 protein plays a crucial role in inhibiting interferon-mediated antiviral responses of the host.
Related Papers (5)