scispace - formally typeset
Open AccessJournal ArticleDOI

Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins.

TLDR
It is shown that expression of the NDV V protein or the Nipah virus V, W, or C proteins rescues NDV-GFP replication in the face of the transfection-induced IFN response, and that the NDVs could be used to screen proteins expressed from plasmids for the ability to counteract the host cellIFN response.
Abstract
We have generated a recombinant Newcastle disease virus (NDV) that expresses the green fluorescence protein (GFP) in infected chicken embryo fibroblasts (CEFs). This virus is interferon (IFN) sensitive, and pretreatment of cells with chicken alpha/beta IFN (IFN-α/β) completely blocks viral GFP expression. Prior transfection of plasmid DNA induces an IFN response in CEFs and blocks NDV-GFP replication. However, transfection of known inhibitors of the IFN-α/β system, including the influenza A virus NS1 protein and the Ebola virus VP35 protein, restores NDV-GFP replication. We therefore conclude that the NDV-GFP virus could be used to screen proteins expressed from plasmids for the ability to counteract the host cell IFN response. Using this system, we show that expression of the NDV V protein or the Nipah virus V, W, or C proteins rescues NDV-GFP replication in the face of the transfection-induced IFN response. The V and W proteins of Nipah virus, a highly lethal pathogen in humans, also block activation of an IFN-inducible promoter in primate cells. Interestingly, the amino-terminal region of the Nipah virus V protein, which is identical to the amino terminus of Nipah virus W, is sufficient to exert the IFN-antagonist activity. In contrast, the anti-IFN activity of the NDV V protein appears to be located in the carboxy-terminal region of the protein, a region implicated in the IFN-antagonist activity exhibited by the V proteins of mumps virus and human parainfluenza virus type 2.

read more

Citations
More filters
Journal ArticleDOI

Inhibition of the host antiviral response by Nipah virus: Current understanding and future perspectives

TL;DR: This review examines the current data on inhibition of the host antiviral response for each of the NiV proteins gathered from viral protein expression systems, in vitro data using recombinant NiV mutants and from in vivo studies using recombination mutants, as well as a future perspective regarding the direction of the field.
Journal ArticleDOI

Newcastle disease virus as a vaccine vector for sars-cov-2

TL;DR: Newcastle disease virus (NDV), an avian virus, has several well-suited properties for development of a vector vaccine against SARS-CoV-2, and this work elaborates on the idea of considering NDV as a vaccine vector for Sars-Cov-2.
Journal ArticleDOI

Molecular evolution and genetic variations of V and W proteins derived by RNA editing in Avian Paramyxoviruses

TL;DR: The molecular clock analysis revealed higher conservation of V protein sequence compared to W protein indicating the important role played by V protein in viral replication, pathogenesis and immune evasion and the estimates of synonymous and non-synonymous substitution rates suggested negative selection pressure on the V and W proteins within species indicating their low evolution rate.
References
More filters
Journal ArticleDOI

Efficient selection for high-expression transfectants with a novel eukaryotic vector

TL;DR: The results showed that high concentrations of G418 efficiently yielded L cell and CHO cell transfectants stably producing IL-2 at levels comparable with those previously attained using gene amplification.
Journal ArticleDOI

Nipah Virus: A Recently Emergent Deadly Paramyxovirus

TL;DR: Electron microscopic, serologic, and genetic studies indicate that the Nipah virus belongs to the family Paramyxoviridae and is most closely related to the recently discovered Hendra virus, and it is suggested that these two viruses are representative of a new genus within the familyparamyxviridae.
Journal ArticleDOI

Influenza A Virus Lacking the NS1 Gene Replicates in Interferon-Deficient Systems

TL;DR: In this paper, a viable transfectant influenza A virus (delNS1) which lacks the NS1 gene has been generated through the use of reverse genetics, and it has been shown that the NS 1 protein plays a crucial role in inhibiting interferon-mediated antiviral responses of the host.
Related Papers (5)