scispace - formally typeset
Open AccessJournal ArticleDOI

Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins.

TLDR
It is shown that expression of the NDV V protein or the Nipah virus V, W, or C proteins rescues NDV-GFP replication in the face of the transfection-induced IFN response, and that the NDVs could be used to screen proteins expressed from plasmids for the ability to counteract the host cellIFN response.
Abstract
We have generated a recombinant Newcastle disease virus (NDV) that expresses the green fluorescence protein (GFP) in infected chicken embryo fibroblasts (CEFs). This virus is interferon (IFN) sensitive, and pretreatment of cells with chicken alpha/beta IFN (IFN-α/β) completely blocks viral GFP expression. Prior transfection of plasmid DNA induces an IFN response in CEFs and blocks NDV-GFP replication. However, transfection of known inhibitors of the IFN-α/β system, including the influenza A virus NS1 protein and the Ebola virus VP35 protein, restores NDV-GFP replication. We therefore conclude that the NDV-GFP virus could be used to screen proteins expressed from plasmids for the ability to counteract the host cell IFN response. Using this system, we show that expression of the NDV V protein or the Nipah virus V, W, or C proteins rescues NDV-GFP replication in the face of the transfection-induced IFN response. The V and W proteins of Nipah virus, a highly lethal pathogen in humans, also block activation of an IFN-inducible promoter in primate cells. Interestingly, the amino-terminal region of the Nipah virus V protein, which is identical to the amino terminus of Nipah virus W, is sufficient to exert the IFN-antagonist activity. In contrast, the anti-IFN activity of the NDV V protein appears to be located in the carboxy-terminal region of the protein, a region implicated in the IFN-antagonist activity exhibited by the V proteins of mumps virus and human parainfluenza virus type 2.

read more

Citations
More filters
Journal ArticleDOI

Surface glycoproteins determine the feature of the 2009 pandemic H1N1 virus

TL;DR: Interestingly, K/09 possesses highly reactive NA proteins and weak HA cell-binding avidity, suggesting that the surface glycoproteins might be a key factor in the features of 2009 pH1N1.
Journal ArticleDOI

Mechanisms and consequences of Newcastle disease virus W protein subcellular localization in the nucleus or mitochondria.

TL;DR: In this article, the authors investigated the mechanism by which NDV W protein becomes localized to different parts of the cell and demonstrates the outcomes of nuclear or cytoplasmic localization both in vitro and in vivo, laying a foundation for subsequent functional studies of the W protein in NDV and other paramyxoviruses.
Journal ArticleDOI

Hendra virus: a one health tale of flying foxes, horses and humans

TL;DR: The recent release of an equine Hendra G glycoprotein subunit vaccine is an exciting advance that offers the opportunity to curb the recent increase in equine transmission events occurring in endemic coastal regions of Australia and thereby reduce the risk of infection in humans.
Journal ArticleDOI

The Intrinsically Disordered W Protein Is Multifunctional during Henipavirus Infection, Disrupting Host Signalling Pathways and Nuclear Import

TL;DR: The role of W in innate immune suppression through inhibition of both pattern recognition receptor (PRR) pathways and interferon (IFN)-responsive signalling is reviewed and specific binding of importin-alpha (Impα) isoforms, and the 14-3-3 group of regulatory proteins suggests further modulation of these processes.
Journal ArticleDOI

Adaptation of a Velogenic Newcastle Disease Virus to Vero Cells: Assessing the Molecular Changes Before and After Adaptation

TL;DR: Pathogenicity studies conducted in 20-week-old seronegative birds revealed gross lesions such as petechial haemorrhages in the trachea, proventricular junction and intestines, and histopathological changes such as depletion and necrosis of the lymphocytes in thymus, spleen, bursa and caecal tonsils in the birds injected with the velogenic virus.
References
More filters
Journal ArticleDOI

Efficient selection for high-expression transfectants with a novel eukaryotic vector

TL;DR: The results showed that high concentrations of G418 efficiently yielded L cell and CHO cell transfectants stably producing IL-2 at levels comparable with those previously attained using gene amplification.
Journal ArticleDOI

Nipah Virus: A Recently Emergent Deadly Paramyxovirus

TL;DR: Electron microscopic, serologic, and genetic studies indicate that the Nipah virus belongs to the family Paramyxoviridae and is most closely related to the recently discovered Hendra virus, and it is suggested that these two viruses are representative of a new genus within the familyparamyxviridae.
Journal ArticleDOI

Influenza A Virus Lacking the NS1 Gene Replicates in Interferon-Deficient Systems

TL;DR: In this paper, a viable transfectant influenza A virus (delNS1) which lacks the NS1 gene has been generated through the use of reverse genetics, and it has been shown that the NS 1 protein plays a crucial role in inhibiting interferon-mediated antiviral responses of the host.
Related Papers (5)