scispace - formally typeset
Open AccessJournal ArticleDOI

Optimization of a GCaMP calcium indicator for neural activity imaging.

Reads0
Chats0
TLDR
GCaMP5 fluorescence provides a more reliable measure of neuronal activity than its predecessor GCaMP3, which allows more sensitive detection of neural activity in vivo and may find widespread applications for cellular imaging in general.
Abstract
Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Recent efforts in protein engineering have significantly increased the performance of GECIs. The state-of-the art single-wavelength GECI, GCaMP3, has been deployed in a number of model organisms and can reliably detect three or more action potentials in short bursts in several systems in vivo. Through protein structure determination, targeted mutagenesis, high-throughput screening, and a battery of in vitro assays, we have increased the dynamic range of GCaMP3 by severalfold, creating a family of “GCaMP5” sensors. We tested GCaMP5s in several systems: cultured neurons and astrocytes, mouse retina, and in vivo in Caenorhabditis chemosensory neurons, Drosophila larval neuromuscular junction and adult antennal lobe, zebrafish retina and tectum, and mouse visual cortex. Signal-to-noise ratio was improved by at least 2- to 3-fold. In the visual cortex, two GCaMP5 variants detected twice as many visual stimulus-responsive cells as GCaMP3. By combining in vivo imaging with electrophysiology we show that GCaMP5 fluorescence provides a more reliable measure of neuronal activity than its predecessor GCaMP3. GCaMP5 allows more sensitive detection of neural activity in vivo and may find widespread applications for cellular imaging in general.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Ultrasensitive fluorescent proteins for imaging neuronal activity.

TL;DR: A family of ultrasensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies and mice in vivo are developed and provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales.
Journal ArticleDOI

Whole-brain functional imaging at cellular resolution using light-sheet microscopy

TL;DR: Light-sheet microscopy is used to record activity from the entire volume of the brain of the larval zebrafish in vivo at 0.8 Hz, capturing more than 80% of all neurons at single-cell resolution, demonstrating how this technique can be used to reveal functionally defined circuits across the brain.
Journal ArticleDOI

A general method to improve fluorophores for live-cell and single-molecule microscopy

TL;DR: Inspired by molecular modeling, the N,N-dimethylamino substituents in tetramethylrhodamine are replaced with four-membered azetidine rings, which doubles the quantum efficiency and improves the photon yield of the dye in applications ranging from in vitro single-molecule measurements to super-resolution imaging.
Journal ArticleDOI

Rapid Single-Step Induction of Functional Neurons from Human Pluripotent Stem Cells

TL;DR: It is shown that human ESCs and iPSCs can be converted into functional iN cells with nearly 100% yield and purity in less than 2 weeks by forced expression of a single transcription factor.
Journal ArticleDOI

Natural Neural Projection Dynamics Underlying Social Behavior

TL;DR: Fiber photometry was developed and applied to optically record natural neural activity in genetically and connectivity-defined projections to elucidate the real-time role of specified pathways in mammalian behavior and captures a fundamental and previously inaccessible dimension of mammalian circuit dynamics.
References
More filters
Journal ArticleDOI

Coot: model-building tools for molecular graphics.

TL;DR: CCP4mg is a project that aims to provide a general-purpose tool for structural biologists, providing tools for X-ray structure solution, structure comparison and analysis, and publication-quality graphics.
Journal ArticleDOI

Phaser crystallographic software

TL;DR: A description is given of Phaser-2.1: software for phasing macromolecular crystal structures by molecular replacement and single-wavelength anomalous dispersion phasing.
Journal ArticleDOI

The CCP4 suite: programs for protein crystallography

TL;DR: The CCP4 (Collaborative Computational Project, number 4) program suite is a collection of programs and associated data and subroutine libraries which can be used for macromolecular structure determination by X-ray crystallography.
Journal ArticleDOI

The Psychophysics Toolbox.

David H. Brainard
- 01 Jan 1997 - 
TL;DR: The Psychophysics Toolbox is a software package that supports visual psychophysics and its routines provide an interface between a high-level interpreted language and the video display hardware.
Journal ArticleDOI

The VideoToolbox software for visual psychophysics: transforming numbers into movies.

TL;DR: The VideoToolbox is a free collection of two hundred C subroutines for Macintosh computers that calibrates and controls the computer-display interface to create accurately specified visual stimuli.
Related Papers (5)