scispace - formally typeset
Journal ArticleDOI

Optimized Slater-type basis sets for the elements 1-118.

E. van Lenthe, +1 more
- 15 Jul 2003 - 
- Vol. 24, Iss: 9, pp 1142-1156
Reads0
Chats0
TLDR
Seven different types of Slater type basis sets for the elements H (Z = 1) up to E118, ranging from a double zeta valence quality up to a quadruple zetavalence quality, are tested in their performance in neutral atomic and diatomic oxide calculations.
Abstract
Seven different types of Slater type basis sets for the elements H (Z = 1) up to E118 (Z = 118), ranging from a double zeta valence quality up to a quadruple zeta valence quality, are tested in their performance in neutral atomic and diatomic oxide calculations. The exponents of the Slater type functions are optimized for the use in (scalar relativistic) zeroth-order regular approximated (ZORA) equations. Atomic tests reveal that, on average, the absolute basis set error of 0.03 kcal/mol in the density functional calculation of the valence spinor energies of the neutral atoms with the largest all electron basis set of quadruple zeta quality is lower than the average absolute difference of 0.16 kcal/mol in these valence spinor energies if one compares the results of ZORA equation with those of the fully relativistic Dirac equation. This average absolute basis set error increases to about 1 kcal/mol for the all electron basis sets of triple zeta valence quality, and to approximately 4 kcal/mol for the all electron basis sets of double zeta quality. The molecular tests reveal that, on average, the calculated atomization energies of 118 neutral diatomic oxides MO, where the nuclear charge Z of M ranges from Z = 1-118, with the all electron basis sets of triple zeta quality with two polarization functions added are within 1-2 kcal/mol of the benchmark results with the much larger all electron basis sets, which are of quadruple zeta valence quality with four polarization functions added. The accuracy is reduced to about 4-5 kcal/mol if only one polarization function is used in the triple zeta basis sets, and further reduced to approximately 20 kcal/mol if the all electron basis sets of double zeta quality are used. The inclusion of g-type STOs to the large benchmark basis sets had an effect of less than 1 kcal/mol in the calculation of the atomization energies of the group 2 and group 14 diatomic oxides. The basis sets that are optimized for calculations using the frozen core approximation (frozen core basis sets) have a restricted basis set in the core region compared to the all electron basis sets. On average, the use of these frozen core basis sets give atomic basis set errors that are approximately twice as large as the corresponding all electron basis set errors and molecular atomization energies that are close to the corresponding all electron results. Only if spin-orbit coupling is included in the frozen core calculations larger errors are found, especially for the heavier elements, due to the additional approximation that is made that the basis functions are orthogonalized on scalar relativistic core orbitals.

read more

Citations
More filters
Journal ArticleDOI

Density functional theory for transition metals and transition metal chemistry

TL;DR: In this article, the authors introduce density functional theory and review recent progress in its application to transition metal chemistry, including local, meta, hybrid, hybrid meta, and range-separated functionals, band theory, software, validation tests, and applications to spin states, magnetic exchange coupling, spectra, structure, reactivity, and solids.
Journal ArticleDOI

Up-Conversion Intersystem Crossing Rates in Organic Emitters for Thermally Activated Delayed Fluorescence: Impact of the Nature of Singlet vs Triplet Excited States

TL;DR: The results indicate that having either similar energies for the local-excitation and charge-transfer triplet states or the right balance between a substantial CT contribution to T1 and somewhat different natures of the S1 and T1 states, paves the way toward UISC enhancement and thus TADF efficiency improvement.
Journal ArticleDOI

High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex.

TL;DR: High-effi ciency white organic light-emitting devices (OLEDs) have great potential for energy saving solid-state lighting and eco-friendly fl at-display panels and are expected to open new designs in lighting technology, such as transparent lighting panels or luminescent wallpapers because of being able to form paper-like thin fi lms.
Journal ArticleDOI

Ultrathin rhodium nanosheets

TL;DR: The fabrication of poly(vinylpyrrolidone)-supported single-layered rhodium nanosheets using a facile solvothermal method represents a class of metallic two-dimensional structures that might inspire further fundamental advances in physics, chemistry and material science.
Journal ArticleDOI

Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning

TL;DR: A target-driven method to predict undiscovered hybrid organic-inorganic perovskites (HOIPs) for photovoltaics based on bandgap, which can achieve high accuracy in a flash and be applicable to a broad class of functional material design.
References
More filters
Journal ArticleDOI

Chemistry with ADF

TL;DR: The “Activation‐strain TS interaction” (ATS) model of chemical reactivity is reviewed as a conceptual framework for understanding how activation barriers of various types of reaction mechanisms arise and how they may be controlled, for example, in organic chemistry or homogeneous catalysis.
Journal ArticleDOI

Relativistic regular two‐component Hamiltonians

TL;DR: In this article, potential-dependent transformations are used to transform the four-component Dirac Hamiltonian to effective two-component regular Hamiltonians, which already contain the most important relativistic effects, including spin-orbit coupling.
Journal ArticleDOI

A Simplification of the Hartree-Fock Method

TL;DR: In this article, the Hartree-Fock equations can be regarded as ordinary Schrodinger equations for the motion of electrons, each electron moving in a slightly different potential field, which is computed by electrostatics from all the charges of the system, positive and negative, corrected by the removal of an exchange charge, equal in magnitude to one electron, surrounding the electron whose motion is being investigated.
Journal ArticleDOI

Towards an order-N DFT method

TL;DR: In this paper, the authors discuss attempts to achieve linear scaling for the calculation of the matrix elements of the exchange-correlation and Coulomb potentials within a particular implementation (the Amsterdam density functional, ADF, code) of the KS method.
Journal ArticleDOI

Quantum electrodynamical corrections to the fine structure of helium

TL;DR: In this article, order α6mc2 corrections to the fine structure splitting of the He4 atom were investigated based on the covariant Bethe-Salpeter equation including external potential to take account of the nuclear Coulomb field.
Related Papers (5)