scispace - formally typeset
Journal ArticleDOI

Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures

Reads0
Chats0
TLDR
The formation of submicrometre-scale structure in perovskite light-emitting diodes can raise their external quantum efficiency beyond 20%, suggesting the possibility of both high efficiency and high brightness.
Abstract
Light-emitting diodes (LEDs), which convert electricity to light, are widely used in modern society—for example, in lighting, flat-panel displays, medical devices and many other situations. Generally, the efficiency of LEDs is limited by nonradiative recombination (whereby charge carriers recombine without releasing photons) and light trapping1–3. In planar LEDs, such as organic LEDs, around 70 to 80 per cent of the light generated from the emitters is trapped in the device4,5, leaving considerable opportunity for improvements in efficiency. Many methods, including the use of diffraction gratings, low-index grids and buckling patterns, have been used to extract the light trapped in LEDs6–9. However, these methods usually involve complicated fabrication processes and can distort the light-output spectrum and directionality6,7. Here we demonstrate efficient and high-brightness electroluminescence from solution-processed perovskites that spontaneously form submicrometre-scale structures, which can efficiently extract light from the device and retain wavelength- and viewing-angle-independent electroluminescence. These perovskites are formed simply by introducing amino-acid additives into the perovskite precursor solutions. Moreover, the additives can effectively passivate perovskite surface defects and reduce nonradiative recombination. Perovskite LEDs with a peak external quantum efficiency of 20.7 per cent (at a current density of 18 milliamperes per square centimetre) and an energy-conversion efficiency of 12 per cent (at a high current density of 100 milliamperes per square centimetre) can be achieved—values that approach those of the best-performing organic LEDs. The formation of submicrometre-scale structure in perovskite light-emitting diodes can raise their external quantum efficiency beyond 20%, suggesting the possibility of both high efficiency and high brightness.

read more

Citations
More filters
Journal ArticleDOI

Efficient perovskite solar cells via improved carrier management

TL;DR: In this paper, an electron transport layer with an ideal film coverage, thickness and composition was developed by tuning the chemical bath deposition of tin dioxide (SnO2) to improve the performance of metal halide perovskite solar cells.
Journal ArticleDOI

An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs

TL;DR: This review summarizes the mechanisms of intrinsic- and extrinsic-environment-induced decomposition of perovskite quantum dots and some possible solutions to improve the stability of PQDs together with suggestions for further improving the performance of pc-LEDs as well as the device lifetime.
Journal ArticleDOI

Minimizing non-radiative recombination losses in perovskite solar cells

TL;DR: In this paper, the predominant pathways that contribute to non-radiative recombination losses in perovskite solar cells, and evaluate their impact on device performance are analyzed, and some notable advances in mitigating these losses are highlighted.
Journal ArticleDOI

Metal halide perovskites for light-emitting diodes.

TL;DR: The development of perovskite emitters, their use in light-emitting devices, and the challenges in enhancing the efficiency and stability, as well as reducing the potential toxicity of this technology are discussed in this Review.
References
More filters
Journal ArticleDOI

ZnO nanofluid as a structure base catalyst for chemoselective amidation of aliphatic carboxylic acids

TL;DR: In this article, nano-ZnO nanofluids were synthesized and utilized as a new reaction media in the preparation of amides via direct amidation of aliphatic carboxylic acids with primary amines under solvent-free conditions.
Related Papers (5)