scispace - formally typeset
Journal ArticleDOI

Minimizing non-radiative recombination losses in perovskite solar cells

TLDR
In this paper, the predominant pathways that contribute to non-radiative recombination losses in perovskite solar cells, and evaluate their impact on device performance are analyzed, and some notable advances in mitigating these losses are highlighted.
Abstract
Photovoltaic solar cells based on metal halide perovskites have gained considerable attention over the past decade because of their potentially low production cost, earth-abundant raw materials, ease of fabrication and ever-increasing power conversion efficiencies of up to 25.2%. This type of solar cells offers the promise of generating electricity at a more competitive unit price than traditional fossil fuels by 2035. Nevertheless, the best research cell efficiencies are still below the theoretical limit defined by the Shockley-Queissier theory owing to the presence of non-radiative recombination losses. In this Review, we analyse the predominant pathways that contribute to non-radiative recombination losses in perovskite solar cells, and evaluate their impact on device performance. We then discuss how non-radiative recombination losses can be estimated through reliable characterization techniques, and highlight some notable advances in mitigating these losses, which hint at pathways towards defect-free perovskite solar cells. Finally, we outline directions for future work that will push the efficiency of perovskite solar cells towards the radiative limit.

read more

Citations
More filters
Journal ArticleDOI

State of the Art and Prospects for Halide Perovskite Nanocrystals.

Amrita Dey, +78 more
- 27 Jul 2021 - 
TL;DR: A comprehensive review of metal-halide perovskite nanocrystals can be found in this article, where researchers having expertise in different fields (chemistry, physics, and device engineering) have joined together to provide a state-of-the-art overview and future prospects of metalhalide nanocrystal research.
Journal Article

Screening in crystalline liquids protects energetic carriers in hybrid perovskites

TL;DR: The hot fluorescence is correlated with liquid-like molecular reorientational motions, suggesting that dynamic screening protects energetic carriers via solvation or large polaron formation on time scales competitive with that of ultrafast cooling.
Journal ArticleDOI

All-perovskite tandem solar cells with improved grain surface passivation

TL;DR: An ammonium-cation-passivated Pb-Sn perovskites with long diffusion lengths are developed, enabling subcells having an absorber thickness of ~1.2 μm, and a certified efficiency of 26.4% in all-perovskite tandem solar cells is reported, exceeding that of the best-performing single-junction perovSKite solar cells.
Journal ArticleDOI

Nanoarchitectonics: what's coming next after nanotechnology?

TL;DR: In this focus article, several examples of material production based on the concept of nanoarchitectonics are introduced via several approaches: from atomic switches to neuromorphic networks; from atomic nanostructure control to environmental and energy applications; and from interfacial processes to devices.
References
More filters
Journal ArticleDOI

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Journal ArticleDOI

Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites

TL;DR: A low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight is reported.
Journal ArticleDOI

Efficient planar heterojunction perovskite solar cells by vapour deposition

TL;DR: It is shown that perovskite absorbers can function at the highest efficiencies in simplified device architectures, without the need for complex nanostructures.
Journal ArticleDOI

Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells

TL;DR: A bilayer architecture comprising the key features of mesoscopic and planar structures obtained by a fully solution-based process is reported, providing important progress towards the understanding of the role of solution-processing in the realization of low-cost and highly efficient perovskite solar cells.
Journal ArticleDOI

High-performance photovoltaic perovskite layers fabricated through intramolecular exchange

TL;DR: An approach for depositing high-quality FAPbI3 films, involving FAP bI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide is reported.
Related Papers (5)