scispace - formally typeset
Open AccessJournal ArticleDOI

Planar-Structure Perovskite Solar Cells with Efficiency beyond 21%

TLDR
This study finds that a moderate residual of PbI2 can deliver stable and high efficiency of solar cells without hysteresis, while too much residual Pbi2 will lead to serious hysteResis and poor transit stability.
Abstract
Low temperature solution processed planar-structure perovskite solar cells gain great attention recently, while their power conversions are still lower than that of high temperature mesoporous counterpart. Previous reports are mainly focused on perovskite morphology control and interface engineering to improve performance. Here, this study systematically investigates the effect of precise stoichiometry, especially the PbI2 contents on device performance including efficiency, hysteresis and stability. This study finds that a moderate residual of PbI2 can deliver stable and high efficiency of solar cells without hysteresis, while too much residual PbI2 will lead to serious hysteresis and poor transit stability. Solar cells with the efficiencies of 21.6% in small size (0.0737 cm2 ) and 20.1% in large size (1 cm2 ) with moderate residual PbI2 in perovskite layer are obtained. The certificated efficiency for small size shows the efficiency of 20.9%, which is the highest efficiency ever recorded in planar-structure perovskite solar cells, showing the planar-structure perovskite solar cells are very promising.

read more

Citations
More filters
Journal ArticleDOI

Surface passivation of perovskite film for efficient solar cells

TL;DR: In this paper, an organic halide salt phenethylammonium iodide (PEAI) was used on HC(NH2)2-CH3NH3 mixed perovskite films for surface defect passivation.
Journal ArticleDOI

High-Efficiency Perovskite Solar Cells.

TL;DR: This review summarizes the fundamentals behind the optoelectronic properties of perovskite materials, as well as the important approaches to fabricating high-efficiency perovSKite solar cells, and possible next-generation strategies for enhancing the PCE over the Shockley-Queisser limit are discussed.
Journal ArticleDOI

High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2

TL;DR: Yang et al. modify the oxide based electron transporting layer with organic acid and obtain planar-type cells with high certified efficiency of 21.5% and decent stability and success in suppressing hysteresis and record efficiency for planars-type devices using EDTA-complexed tin oxide (SnO2) electron-transport layer.
Journal ArticleDOI

Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells

TL;DR: Li et al. as discussed by the authors employed fluoride to simultaneously passivate both anion and cation vacancies, by taking advantage of the extremely high electronegativity of fluoride, and obtained a power conversion efficiency of 21.46% (and a certified 21.3%-efficient cell) in a device based on the caesium, methylammonium (MA), and formamidinium (FA) triple-cation perovskite (Cs0.05FA0.41)Pb(I0.98Br0.02)3 treated with sodium
References
More filters
Journal ArticleDOI

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Journal ArticleDOI

Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites

TL;DR: A low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight is reported.
Journal ArticleDOI

High-performance photovoltaic perovskite layers fabricated through intramolecular exchange

TL;DR: An approach for depositing high-quality FAPbI3 films, involving FAP bI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide is reported.
Journal ArticleDOI

Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells

TL;DR: The introduction of additional iodide ions into the organic cation solution, which is used to form the perovskite layers through an intramolecular exchanging process, decreases the concentration of deep-level defects, enabling the fabrication of PSCs with a certified power conversion efficiency.
Related Papers (5)