scispace - formally typeset
Open AccessJournal ArticleDOI

Planck 2015 results. XX. Constraints on inflation

Reads0
Chats0
TLDR
In this article, the authors report on the implications for cosmic inflation of the 2018 Release of the Planck CMB anisotropy measurements, which are fully consistent with the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles.
Abstract
We report on the implications for cosmic inflation of the 2018 Release of the Planck CMB anisotropy measurements. The results are fully consistent with the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles. Planck temperature, polarization, and lensing data determine the spectral index of scalar perturbations to be $n_\mathrm{s}=0.9649\pm 0.0042$ at 68% CL and show no evidence for a scale dependence of $n_\mathrm{s}.$ Spatial flatness is confirmed at a precision of 0.4% at 95% CL with the combination with BAO data. The Planck 95% CL upper limit on the tensor-to-scalar ratio, $r_{0.002}<0.10$, is further tightened by combining with the BICEP2/Keck Array BK15 data to obtain $r_{0.002}<0.056$. In the framework of single-field inflationary models with Einstein gravity, these results imply that: (a) slow-roll models with a concave potential, $V" (\phi) < 0,$ are increasingly favoured by the data; and (b) two different methods for reconstructing the inflaton potential find no evidence for dynamics beyond slow roll. Non-parametric reconstructions of the primordial power spectrum consistently confirm a pure power law. A complementary analysis also finds no evidence for theoretically motivated parameterized features in the Planck power spectrum, a result further strengthened for certain oscillatory models by a new combined analysis that includes Planck bispectrum data. The new Planck polarization data provide a stringent test of the adiabaticity of the initial conditions. The polarization data also provide improved constraints on inflationary models that predict a small statistically anisotropic quadrupolar modulation of the primordial fluctuations. However, the polarization data do not confirm physical models for a scale-dependent dipolar modulation.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Planck 2015 results - XIII. Cosmological parameters

Peter A. R. Ade, +337 more
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Journal ArticleDOI

Planck 2015 results. XIII. Cosmological parameters

Peter A. R. Ade, +260 more
TL;DR: In this paper, the authors present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB, which are consistent with the six-parameter inflationary LCDM cosmology.
Journal ArticleDOI

Planck 2018 results. VI. Cosmological parameters

Nabila Aghanim, +232 more
TL;DR: In this article, the authors present cosmological parameter results from the full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction.
Journal ArticleDOI

Planck 2018 results. VI. Cosmological parameters

Nabila Aghanim, +232 more
TL;DR: In this paper, the cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies were presented, with good consistency with the standard spatially-flat 6-parameter CDM cosmology having a power-law spectrum of adiabatic scalar perturbations from polarization, temperature, and lensing separately and in combination.
Journal ArticleDOI

Detection of $B$-Mode Polarization at Degree Angular Scales by BICEP2

TL;DR: An excess of B-mode power over the base lensed-ΛCDM expectation is found in the range 30 < ℓ < 150, inconsistent with the null hypothesis at a significance of >5σ, and it is shown that systematic contamination is much smaller than the observed excess.
References
More filters
Journal ArticleDOI

Cosmic microwave background anomalies in an open universe

TL;DR: It is argued that the observed large-scale cosmic microwave anomalies, discovered by WMAP and confirmed by the Planck satellite, are most naturally explained in the context of a marginally open universe, and a specific implementation of the scenario which appears compatible with all existing constraints is provided.
Journal ArticleDOI

Planck 2015 results. VI. LFI mapmaking

Peter A. R. Ade, +199 more
TL;DR: In this paper, a map-making procedure for Planck LFI (low frequency instrument) data is described, where the main products are sky maps of $I,Q, and $U$ Stokes components.
Journal ArticleDOI

Non-parametric reconstruction of the primordial power spectrum at horizon scales from WMAP data

TL;DR: In this article, the authors proposed a method that reconstructs the primordial power spectrum from cosmic microwave background data at high resolution using a smoothing prior and Monte Carlo simulations around an initial power spectrum with spectral index n s = 0.97.
Journal ArticleDOI

Inflation with moderately sharp features in the speed of sound: generalized slow roll and in-in formalism for power spectrum and bispectrum

TL;DR: In this paper, mild transient reductions in the speed of sound of the adiabatic mode during inflation, of their effect on the primordial power spectrum and bispectrum, and of their detectability in the cosmic microwave background (CMB).
Journal ArticleDOI

Planck 2015 results - VI. LFI mapmaking

Peter A. R. Ade, +258 more
TL;DR: This paper describes the mapmaking procedure applied to Planck Low Frequency Instrument (LFI) data, based on a destriping technique, which is enhanced with a noise prior, and presents polarization maps at LFI frequencies for the first time.
Related Papers (5)

Planck 2015 results. XIII. Cosmological parameters

Peter A. R. Ade, +260 more