scispace - formally typeset
Journal ArticleDOI

Polarization management for silicon photonic integrated circuits

Reads0
Chats0
TLDR
Polarization management is very important for photonic integrated circuits (PICs) and their applications as mentioned in this paper, however, due to geometrical anisotropy and fabrication inaccuracies, the characteristics of the guided transverseelectrical (TE) and transverse-magnetic (TM) modes are generally different.
Abstract
Polarization management is very important for photonic integrated circuits (PICs) and their applications. Due to geometrical anisotropy and fabrication inaccuracies, the characteristics of the guided transverse-electrical (TE) and transverse-magnetic (TM) modes are generally different. Polarization-dependent dispersion and polarization-dependent loss are such manifestations in PICs. These issues become more severe in high index contrast structures such as nanophotonic waveguides made of silicon-on-insulator (SOI), which has been regarded as a good platform for optical interconnects because of the compatibility with CMOS processing. Recently, polarization division multiplexing (PDM) with coherent detection using silicon photonics has also attracted much attention. This trend further highlights the importance of polarization management in silicon PICs. The authors review their work on polarization management for silicon PICs using the polarization independence and polarization diversity methods. Polarization issues and solutions in PICs made of SOI nanowires and ridge waveguides are discussed.

read more

Citations
More filters
Journal ArticleDOI

Design and simulation of tunable TE and TM pass polarizers based on VO2/Si hybrid waveguide

TL;DR: In this paper , active transverse electric and transverse magnetic pass polarizers with lengths of only 1.92 μm and 5.95 μm based on silicon waveguides and phase change material VO2 films are theoretically demonstrated.
Patent

Feedback controlled closed loop on-chip isolator

TL;DR: In this paper, a photonic integrated circuit (PIC) with an on-chip optical isolator is described, in which a laser, a waveguide coupled with the laser, and a closed loop resonator coupled to the laser through the waveguide.
Proceedings ArticleDOI

Mode conversion/coupling in submicron silicon-on-insulator optical waveguides and the applications

TL;DR: In this paper, the authors discuss the polarization-dependent mode conversion in an adiabatic submicron SOI optical waveguide tapers and the application to realize polarization rotation with simple fabrication processes.
Proceedings ArticleDOI

Active Low Insertion Loss TE Pass Polarizer

TL;DR: In this paper, the authors numerically demonstrated an active polarizer based on GST-assisted hybrid waveguide and achieved a high extinction ratio with the ultra-low insertion loss with GST in crystalline phase.
References
More filters
Journal ArticleDOI

The Past, Present, and Future of Silicon Photonics

TL;DR: In this paper, the state-of-the-art CMOS silicon-on-insulator (SOI) foundries are now being utilized in a crucial test of 1.55mum monolithic optoelectronic (OE) integration, a test sponsored by the Defense Advanced Research Projects Agency (DARPA).
Journal ArticleDOI

Guiding and confining light in void nanostructure.

TL;DR: It is shown that by use of a novel waveguide geometry the field can be confined in a 50-nm-wide low-index region with a normalized intensity of 20 microm(-2), approximately 20 times higher than what can be achieved in SiO2 with conventional rectangular waveguides.
Journal ArticleDOI

Recent progress in lasers on silicon

TL;DR: In this paper, the authors review the most recent progress in this field, including low-threshold silicon Raman lasers with racetrack ring resonator cavities, the first germanium-on-silicon lasers operating at room temperature, and hybrid silicon microring and microdisk lasers.
Journal ArticleDOI

Losses in single-mode silicon-on-insulator strip waveguides and bends.

TL;DR: The fabrication and accurate measurement of propagation and bending losses in single-mode silicon waveguides with submicron dimensions fabricated on silicon-on-insulator wafers with record low numbers can be used as a benchmark for further development of silicon microphotonic components and circuits.
Related Papers (5)