scispace - formally typeset
Open AccessJournal ArticleDOI

Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models.

Reads0
Chats0
TLDR
The Functional Analysis Through Hidden Markov Models (FATHMM) software and server is described: a species‐independent method with optional species‐specific weightings for the prediction of the functional effects of protein missense variants, demonstrating that FATHMM can be efficiently applied to high‐throughput/large‐scale human and nonhuman genome sequencing projects with the added benefit of phenotypic outcome associations.
Abstract
The rate at which nonsynonymous single nucleotide polymorphisms (nsSNPs) are being identified in the human genome is increasing dramatically owing to advances in whole-genome/whole-exome sequencing technologies. Automated methods capable of accurately and reliably distinguishing between pathogenic and functionally neutral nsSNPs are therefore assuming ever-increasing importance. Here, we describe the Functional Analysis Through Hidden Markov Models (FATHMM) software and server: a species-independent method with optional species-specific weightings for the prediction of the functional effects of protein missense variants. Using a model weighted for human mutations, we obtained performance accuracies that outperformed traditional prediction methods (i.e., SIFT, PolyPhen, and PANTHER) on two separate benchmarks. Furthermore, in one benchmark, we achieve performance accuracies that outperform current state-of-the-art prediction methods (i.e., SNPs&GO and MutPred). We demonstrate that FATHMM can be efficiently applied to high-throughput/large-scale human and nonhuman genome sequencing projects with the added benefit of phenotypic outcome associations. To illustrate this, we evaluated nsSNPs in wheat (Triticum spp.) to identify some of the important genetic variants responsible for the phenotypic differences introduced by intense selection during domestication. A Web-based implementation of FATHMM, including a high-throughput batch facility and a downloadable standalone package, is available at http://fathmm.biocompute.org.uk.

read more

Citations
More filters
Journal ArticleDOI

Clinical significance of genetic variation in hypertrophic cardiomyopathy: comparison of computational tools to prioritize missense variants

TL;DR: This work compared the performance of 39 currently available prediction tools in distinguishing between high-confidence HCM-causing missense variants and benign variants, and developed an easy-to-use-tool to perform variant prediction benchmarks based on annotated VCF files (VETA).
Journal ArticleDOI

Identification of novel compound heterozygous SPG7 mutations-related hereditary spastic paraplegia in a Chinese family: a case report.

TL;DR: This paper proves to be the first case report of SPG7 mutation in ARHSP reported in Chinese population and indicates that the SPG 7 mutation is an important cause of adult-onset undiagnosed ataxia.

Next Generation Diagnostic Molecular Pathology

TL;DR: The central theme of this thesis is the application of molecular analyses in a routine di¬agnostic setting that remained unsolved based on clinical and histopathological characteristics.
Journal ArticleDOI

Computational methods to assist in the discovery of pharmacological chaperones for rare diseases

TL;DR: This review would like to focus on the computational methods that can assist and accelerate the search for pharmacological chaperones, and examples in which these methods were successfully applied for the discovery of promising molecules belonging to this new category of pharmacologically active compounds.
References
More filters
Journal ArticleDOI

Basic Local Alignment Search Tool

TL;DR: A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score.
Journal ArticleDOI

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Journal ArticleDOI

Gene Ontology: tool for the unification of biology

TL;DR: The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing.
Journal ArticleDOI

The Pfam protein families database

TL;DR: The definition and use of family-specific, manually curated gathering thresholds are explained and some of the features of domains of unknown function (also known as DUFs) are discussed, which constitute a rapidly growing class of families within Pfam.
Related Papers (5)