scispace - formally typeset
Open AccessJournal ArticleDOI

Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models.

Reads0
Chats0
TLDR
The Functional Analysis Through Hidden Markov Models (FATHMM) software and server is described: a species‐independent method with optional species‐specific weightings for the prediction of the functional effects of protein missense variants, demonstrating that FATHMM can be efficiently applied to high‐throughput/large‐scale human and nonhuman genome sequencing projects with the added benefit of phenotypic outcome associations.
Abstract
The rate at which nonsynonymous single nucleotide polymorphisms (nsSNPs) are being identified in the human genome is increasing dramatically owing to advances in whole-genome/whole-exome sequencing technologies. Automated methods capable of accurately and reliably distinguishing between pathogenic and functionally neutral nsSNPs are therefore assuming ever-increasing importance. Here, we describe the Functional Analysis Through Hidden Markov Models (FATHMM) software and server: a species-independent method with optional species-specific weightings for the prediction of the functional effects of protein missense variants. Using a model weighted for human mutations, we obtained performance accuracies that outperformed traditional prediction methods (i.e., SIFT, PolyPhen, and PANTHER) on two separate benchmarks. Furthermore, in one benchmark, we achieve performance accuracies that outperform current state-of-the-art prediction methods (i.e., SNPs&GO and MutPred). We demonstrate that FATHMM can be efficiently applied to high-throughput/large-scale human and nonhuman genome sequencing projects with the added benefit of phenotypic outcome associations. To illustrate this, we evaluated nsSNPs in wheat (Triticum spp.) to identify some of the important genetic variants responsible for the phenotypic differences introduced by intense selection during domestication. A Web-based implementation of FATHMM, including a high-throughput batch facility and a downloadable standalone package, is available at http://fathmm.biocompute.org.uk.

read more

Citations
More filters
Journal ArticleDOI

Whole Exome Sequencing with Comprehensive Gene Set Analysis Identified a Biparental-Origin Homozygous c.509G>A Mutation in PPIB Gene Clustered in Two Taiwanese Families Exhibiting Fetal Skeletal Dysplasia during Prenatal Ultrasound.

TL;DR: The use of trio-based whole exome sequencing with comprehensive gene set analysis in two Taiwanese non-consanguineous families with fetal SD at autopsy supports a diagnosis of a rare form of autosomal recessive SD, osteogenesis imperfecta type IX (OI IX), and confirms that the use of a trio-WES study is helpful to uncover a genetic explanation for observed fetal anomalies.
Journal ArticleDOI

Identification of altered biological processes in heterogeneous RNA-sequencing data by discretization of expression profiles.

TL;DR: GSECA showed that, in prostate cancer, PTEN loss appears to establish an immunosuppressive tumor microenvironment through the activation of STAT3, and low PTEN expression levels have a detrimental impact on patient disease-free survival.
Journal ArticleDOI

Syndromic hearing loss molecular diagnosis: Application of massive parallel sequencing.

TL;DR: A customized Ion AmpliSeq Panel was customized to cover the coding sequences of 52 genes, and demonstrated effectiveness in molecular diagnosis when compared to others in the literature, especially for patients with a defined clinical diagnosis.
Journal ArticleDOI

Vanno: A visualization-aided variant annotation tool

TL;DR: Vanno, a Web‐based application for in‐depth analysis and rapid evaluation of disease‐causative genome sequence alterations, is developed, providing a complete solution for targeted and exome sequencing analysis.
Journal ArticleDOI

CancerVar: An artificial intelligence–empowered platform for clinical interpretation of somatic mutations in cancer

TL;DR: CancerVar is developed to facilitate automated and standardized interpretations for 13 million somatic mutations based on the AMP/ASCO/CAP 2017 guidelines and introduced a deep learning framework to predict oncogenicity for these variants using both functional and clinical features.
References
More filters
Journal ArticleDOI

Basic Local Alignment Search Tool

TL;DR: A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score.
Journal ArticleDOI

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Journal ArticleDOI

Gene Ontology: tool for the unification of biology

TL;DR: The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing.
Journal ArticleDOI

The Pfam protein families database

TL;DR: The definition and use of family-specific, manually curated gathering thresholds are explained and some of the features of domains of unknown function (also known as DUFs) are discussed, which constitute a rapidly growing class of families within Pfam.
Related Papers (5)