scispace - formally typeset
Open AccessJournal ArticleDOI

Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy

Reads0
Chats0
TLDR
Cholesterol was shown to promote lipid segregation in dioleoyl-phosphatidylcholine-enriched, liquid-disordered, and sphingomyelin-en enriched, liquid -ordered phases and the lipid mobility in sphingomeelin- enriched regions significantly increased by increasing the cholesterol concentration, pinpoint the key role, played by cholesterol in tuning lipid dynamics in membranes.
About
This article is published in Journal of Biological Chemistry.The article was published on 2003-07-25 and is currently open access. It has received 517 citations till now. The article focuses on the topics: Lipid bilayer phase behavior & Liquid ordered phase.

read more

Citations
More filters

疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A

宁北芳, +1 more
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Journal ArticleDOI

Lipid Rafts: Elusive or Illusive?

TL;DR: There has been considerable recent interest in the possibility that the plasma membrane contains lipid "rafts," microdomains enriched in cholesterol and sphingolipids, and it seems that a definitive proof of raft existence has yet to be obtained.
Journal ArticleDOI

Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol.

TL;DR: In this article, the authors use fluorescence microscopy to directly observe liquid phases in giant unilamellar vesicles and find a simple relationship between chain melting temperature and miscibility transition temperature that holds for both phosphatidylcholine and sphingomyelin lipids.
Journal ArticleDOI

Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts

TL;DR: The diagrams here described are used to rationalize literature results, some of them apparently discrepant, and to discuss lipid rafts within the framework of liquid-ordered/liquid-disordered phase coexistence.
Journal ArticleDOI

Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles

TL;DR: It is demonstrated that giant plasma membrane vesicles (GPMVs) or blebs formed from the plasma membranes of cultured mammalian cells can also segregate into micrometer-scale fluid phase domains, and GPMVs now provide an effective approach to characterize biological membrane heterogeneities.
References
More filters

疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A

宁北芳, +1 more
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Journal ArticleDOI

Functional rafts in cell membranes

Kai Simons, +1 more
- 05 Jun 1997 - 
TL;DR: A new aspect of cell membrane structure is presented, based on the dynamic clustering of sphingolipids and cholesterol to form rafts that move within the fluid bilayer that function as platforms for the attachment of proteins when membranes are moved around inside the cell and during signal transduction.
Journal ArticleDOI

Lipid rafts and signal transduction

TL;DR: It is now becoming clear that lipid micro-environments on the cell surface — known as lipid rafts — also take part in this process of signalling transduction, where protein–protein interactions result in the activation of signalling cascades.
Journal ArticleDOI

Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface

TL;DR: It is shown that a protein with a glycosylphosphatidyl inositol (GPI) anchor can be recovered from lysates of epithelial cells in a low density, detergent-insoluble form, supporting the model proposed by Simons and colleagues for sorting of certain membrane proteins to the apical surface after intracellular association with glycosphingolipids.
Journal ArticleDOI

Functions of lipid rafts in biological membranes.

TL;DR: The relationship between detergent-resistant membranes, rafts, caveolae, and low-density plasma membrane fragments, and possible functions of lipid rafts in membranes are discussed.
Related Papers (5)