scispace - formally typeset
Journal ArticleDOI

Progress, Challenges, and Opportunities for 2D Material Based Photodetectors

Reads0
Chats0
TLDR
A review of photodetectors based on 2D materials covering the detection spectrum from ultraviolet to infrared is presented in this paper, where a brief insight into the detection mechanisms of 2D material photodeterceptors as well as introducing the figure-of-merits which are key factors for a reasonable comparison between different photoderectors is provided.
Abstract
2D material based photodetectors have attracted many research projects due to their unique structures and excellent electronic and optoelectronic properties. These 2D materials, including semimetallic graphene, semiconducting black phosphorus, transition metal dichalcogenides, insulating hexagonal boron nitride, and their various heterostructures, show a wide distribution in bandgap values. To date, hundreds of photodetectors based on 2D materials have been reported. Here, a review of photodetectors based on 2D materials covering the detection spectrum from ultraviolet to infrared is presented. First, a brief insight into the detection mechanisms of 2D material photodetectors as well as introducing the figure-of-merits which are key factors for a reasonable comparison between different photodetectors is provided. Then, the recent progress on 2D material based photodetectors is reviewed. Particularly, the excellent performances such as broadband spectrum detection, ultrahigh photoresponsivity and sensitivity, fast response speed and high bandwidth, polarization-sensitive detection are pointed out on the basis of the state-of-the-art 2D photodetectors. Initial applications based on 2D material photodetectors are mentioned. Finally, an outlook is delivered, the challenges and future directions are discussed, and general advice for designing and realizing novel high-performance photodetectors is given to provide a guideline for the future development of this fast-developing field.

read more

Citations
More filters
Journal Article

Light Generation and Harvesting in a Van der Waals Heterostructure

TL;DR: In this paper, a light-emitting diodes based on vertical heterojunctions composed of n-type monolayer MoS2 and p-type silicon was realized.
Journal ArticleDOI

Van der Waals Heterostructures for High‐Performance Device Applications: Challenges and Opportunities

TL;DR: The current status of vertical heterostructure device applications in vertical transistors, infrared photodetectors, and spintronic memory/transistors is reviewed and the relevant challenges for achieving high-performance devices are presented.
Journal ArticleDOI

Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature

TL;DR: The authors report polarization sensitive photodetectors based on thin tellurium nanosheets with high photoresponsivity in the mid-infrared range and an anisotropic ratio of ∼8 for 2.3 μm illumination to ensure polarized imaging.
References
More filters
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Two-dimensional gas of massless Dirac fermions in graphene

TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Journal ArticleDOI

Atomically thin MoS2: a new direct-gap semiconductor

TL;DR: The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N=1,2,…,6 S-Mo-S monolayers have been investigated by optical spectroscopy and the effect of quantum confinement on the material's electronic structure is traced.
Journal ArticleDOI

Experimental observation of the quantum Hall effect and Berry's phase in graphene

TL;DR: In this paper, an experimental investigation of magneto-transport in a high-mobility single layer of Graphene is presented, where an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene is observed.
Journal ArticleDOI

Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils

TL;DR: It is shown that graphene grows in a self-limiting way on copper films as large-area sheets (one square centimeter) from methane through a chemical vapor deposition process, and graphene film transfer processes to arbitrary substrates showed electron mobilities as high as 4050 square centimeters per volt per second at room temperature.
Related Papers (5)