scispace - formally typeset
Book ChapterDOI

Protein identification and analysis tools in the ExPASy server

TLDR
Details are given about protein identification and analysis software that is available through the ExPASy World Wide Web server and the extensive annotation available in the Swiss-Prot database is used.
Abstract
Protein identification and analysis software performs a central role in the investigation of proteins from two-dimensional (2-D) gels and mass spectrometry. For protein identification, the user matches certain empirically acquired information against a protein database to define a protein as already known or as novel. For protein analysis, information in protein databases can be used to predict certain properties about a protein, which can be useful for its empirical investigation. The two processes are thus complementary. Although there are numerous programs available for those applications, we have developed a set of original tools with a few main goals in mind. Specifically, these are: 1. To utilize the extensive annotation available in the Swiss-Prot database wherever possible, in particular the position-specific annotation in the Swiss-Prot feature tables to take into account posttranslational modifications and protein processing. 2. To develop tools specifically, but not exclusively, applicable to proteins prepared by two dimensional gel electrophoresis and peptide mass fingerprinting experiments. 3. To make all tools available on the World-Wide Web (WWW), and freely usable by the scientific community. In this chapter we give details about protein identification and analysis software that is available through the ExPASy World Wide Web server.

read more

Citations
More filters
Book

Isolation and characterization

TL;DR: Animal Models and Therapy, Directed Differentiation and Characterization of Genetically Modified Embryonic Stem Cells for Therapy, and Use of Differentiating Embryonics Stem cells in the Parkinsonian Mouse Model are reviewed.
Journal ArticleDOI

LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana

TL;DR: A genome-wide analysis of LEA proteins and their encoding genes in Arabidopsis thaliana indicates a wide range of sequence diversity, intracellular localizations, and expression patterns and indicates that they confer an evolutionary advantage for an organism under varying stressful environmental conditions.
Journal ArticleDOI

Membrane proteins bind lipids selectively to modulate their structure and function

TL;DR: It is demonstrated that resistance to unfolding correlates with specific lipid-binding events, enabling a distinction to be made between lipids that merely bind from those that modulate membrane protein structure and/or function.
References
More filters
Journal ArticleDOI

Basic Local Alignment Search Tool

TL;DR: A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score.
Journal ArticleDOI

Gene Ontology: tool for the unification of biology

TL;DR: The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing.
Journal ArticleDOI

A simple method for displaying the hydropathic character of a protein

TL;DR: A computer program that progressively evaluates the hydrophilicity and hydrophobicity of a protein along its amino acid sequence has been devised and its simplicity and its graphic nature make it a very useful tool for the evaluation of protein structures.
Journal ArticleDOI

Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.

TL;DR: A new method for the identification of signal peptides and their cleavage sites based on neural networks trained on separate sets of prokaryotic and eukaryotic sequence that performs significantly better than previous prediction schemes and can easily be applied on genome-wide data sets.

SHORT COMMUNICATION Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites

TL;DR: In this paper, a new method for the identification of in performance compared with the weight matrix method signal peptides and their cleavage sites based on neural (Arrigo et al., 1991; Ladunga et al, 1991; Schneider and networks trained on separate sets of prokaryotic and eukaryotic sequence.
Related Papers (5)