scispace - formally typeset
Journal ArticleDOI

Reconciling the chemistry and biology of reactive oxygen species

Christine C. Winterbourn
- 01 May 2008 - 
- Vol. 4, Iss: 5, pp 278-286
TLDR
This review examines how target selectivity and antioxidant effectiveness vary for different oxidants and highlights areas where greater understanding is required on the fate of oxidants generated by cellular NADPH oxidases and on the identification of oxidant sensors in cell signaling.
Abstract
There is a vast literature on the generation and effects of reactive oxygen species in biological systems, both in relation to damage they cause and their involvement in cell regulatory and signaling pathways. The biological chemistry of different oxidants is becoming well understood, but it is often unclear how this translates into cellular mechanisms where redox changes have been demonstrated. This review addresses this gap. It examines how target selectivity and antioxidant effectiveness vary for different oxidants. Kinetic considerations of reactivity are used to assess likely targets in cells and how reactions might be influenced by restricted diffusion and compartmentalization. It also highlights areas where greater understanding is required on the fate of oxidants generated by cellular NADPH oxidases and on the identification of oxidant sensors in cell signaling.

read more

Citations
More filters
Journal ArticleDOI

Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations.

TL;DR: A critical analysis of the challenges and limitations of the most widely used fluorescent probes for detecting and measuring reactive oxygen and nitrogen species and proposed guidelines that will help present and future researchers with regard to the optimal use of selected fluorescent probes and interpretation of results are presented.
Journal ArticleDOI

Chemistry and biology of reactive oxygen species in signaling or stress responses

TL;DR: This Perspective provides a focused discussion on what factors lead ROS molecules to become signal and/or stress agents, highlighting how increasing knowledge of the underlying chemistry of ROS can lead to advances in understanding their disparate contributions to biology.
Journal ArticleDOI

Neutrophil Function: From Mechanisms to Disease

TL;DR: A survey of basic neutrophil biology, with an emphasis on examples that highlight the function of neutrophils not only as professional killers, but also as instructors of the immune system in the context of infection and inflammatory disease.
Journal ArticleDOI

Reactive Oxygen Species (ROS)-Based Nanomedicine.

TL;DR: In this article, the intrinsic biochemical properties of reactive oxygen species (ROS) underlie the mechanisms that regulate various physiological functions of living organisms, and they play an essential role in regulating various physiological function.
References
More filters
Book

Free radicals in biology and medicine

TL;DR: 1. Oxygen is a toxic gas - an introduction to oxygen toxicity and reactive species, and the chemistry of free radicals and related 'reactive species'
Journal ArticleDOI

Superoxide Dismutase AN ENZYMIC FUNCTION FOR ERYTHROCUPREIN (HEMOCUPREIN)

TL;DR: The demonstration that O2·- can reduce ferricytochrome c and tetranitromethane, and that superoxide dismutase, by competing for the superoxide radicals, can markedly inhibit these reactions, is demonstrated.
Journal ArticleDOI

Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes.

TL;DR: This review provides a comprehensive summary on the chemical properties of 4-hydroxyalkenals and malonaldehyde, the mechanisms of their formation and their occurrence in biological systems and methods for their determination, as well as the many types of biological activities described so far.
Journal ArticleDOI

ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis

TL;DR: The pathways that regulate ROS homeostasis are crucial for mitigating the toxicity of ROS and provide strong evidence about specificity in ROS signalling.
Journal ArticleDOI

NOX enzymes and the biology of reactive oxygen

TL;DR: Professional phagocytes generate high levels of reactive oxygen species (ROS) using a superoxide-generating NADPH oxidase as part of their armoury of microbicidal mechanisms, leading to the concept that ROS are 'intentionally' generated in these cells with distinctive cellular functions related to innate immunity, signal transduction and modification of the extracellular matrix.
Related Papers (5)