scispace - formally typeset
Open AccessJournal ArticleDOI

Regulation of the NADPH Oxidase RBOHD During Plant Immunity

Yasuhiro Kadota, +2 more
- 01 Aug 2015 - 
- Vol. 56, Iss: 8, pp 1472-1480
Reads0
Chats0
TLDR
The plasma membrane-associated cytoplasmic kinase BIK1 (BOTRYTIS-INDUCED KINASE1), which is a direct substrate of the PRR complex, directly interacts with and phosphorylates RBOHD upon PAMP perception, suggesting that RBO HD activity is tightly controlled by multilayered regulations.
Abstract
Pathogen recognition induces the production of reactive oxygen species (ROS) by NADPH oxidases in both plants and animals. ROS have direct antimicrobial properties, but also serve as signaling molecules to activate further immune outputs. However, ROS production has to be tightly controlled to avoid detrimental effects on host cells, but yet must be produced in the right amount, at the right place and at the right time upon pathogen perception. Plant NADPH oxidases belong to the respiratory burst oxidase homolog (RBOH) family, which contains 10 members in the model plant Arabidopsis thaliana. The perception of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs) leads to a rapid, specific and strong production of ROS, which is dependent on RBOHD. RBOHD is mainly controlled by Ca(2+) via direct binding to EF-hand motifs and phosphorylation by Ca(2+)-dependent protein kinases. Recent studies have, however, revealed a critical role for a Ca(2+)-independent regulation of RBOHD. The plasma membrane-associated cytoplasmic kinase BIK1 (BOTRYTIS-INDUCED KINASE1), which is a direct substrate of the PRR complex, directly interacts with and phosphorylates RBOHD upon PAMP perception. Impairment of these phosphorylation events completely abolishes the function of RBOHD in immunity. These results suggest that RBOHD activity is tightly controlled by multilayered regulations. In this review, we summarize recent advances in our understanding of the regulatory mechanisms controlling RBOHD activation.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Regulation of pattern recognition receptor signalling in plants.

TL;DR: The mechanisms that fine-tune immune signalling to maintain immune homeostasis are described and how the innate ability of plant cells to monitor the integrity of key immune components can lead to autoimmune phenotypes following genetic or pathogen-induced perturbations of these components are discussed.
Journal ArticleDOI

Reactive Oxygen Species in Plant Signaling

TL;DR: The most challenging contemporary questions in the field of plant ROS biology are outlined and the need to further elucidate mechanisms allowing sensing, signaling specificity, and coordination of multiple signals is outlined.
Journal ArticleDOI

Hydrogen peroxide metabolism and functions in plants.

TL;DR: H2 O2 oxidizes specific cysteine residues of target proteins to the sulfenic acid form and, similar to other organisms, this modification could initiate thiol-based redox relays and modify target enzymes, receptor kinases and transcription factors.
Journal ArticleDOI

Plant Immunity: Danger Perception and Signaling

TL;DR: Recent advances in understanding the mechanisms underlying activation of the main classes of immune receptors are highlighted, the current understanding of their signaling mechanisms are summarized, and an updated model for SA perception and signaling is discussed.
References
More filters
Journal ArticleDOI

The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology

TL;DR: This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.
Journal ArticleDOI

The oxidative burst in plant disease resistance

TL;DR: Emerging data indicate that the oxidative burst reflects activation of a membrane-bound NADPH oxidase closely resembling that operating in activated neutrophils, which underlies the expression of disease-resistance mechanisms.
Journal ArticleDOI

NOX enzymes and the biology of reactive oxygen

TL;DR: Professional phagocytes generate high levels of reactive oxygen species (ROS) using a superoxide-generating NADPH oxidase as part of their armoury of microbicidal mechanisms, leading to the concept that ROS are 'intentionally' generated in these cells with distinctive cellular functions related to innate immunity, signal transduction and modification of the extracellular matrix.
Journal ArticleDOI

A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors

TL;DR: Current evidence indicates that MAMPs, DAMPs, and effectors are all perceived as danger signals and induce a stereotypic defense response, and the importance of MAMP/PRR signaling for plant immunity is highlighted.
Journal ArticleDOI

Plant immunity: towards an integrated view of plant―pathogen interactions

TL;DR: The recent convergence of molecular studies of plant immunity and pathogen infection strategies is revealing an integrated picture of the plant–pathogen interaction from the perspective of both organisms, suggesting novel biotechnological approaches to crop protection.
Related Papers (5)