scispace - formally typeset
Open AccessJournal ArticleDOI

Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism.

Reads0
Chats0
TLDR
This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination,ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration.
Abstract
Antibacterial activity of zinc oxide nanoparticles (ZnO-NPs) has received significant interest worldwide particularly by the implementation of nanotechnology to synthesize particles in the nanometer region. Many microorganisms exist in the range from hundreds of nanometers to tens of micrometers. ZnO-NPs exhibit attractive antibacterial properties due to increased specific surface area as the reduced particle size leading to enhanced particle surface reactivity. ZnO is a bio-safe material that possesses photo-oxidizing and photocatalysis impacts on chemical and biological species. This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination, ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration. Particular emphasize was given to bactericidal and bacteriostatic mechanisms with focus on generation of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), OH− (hydroxyl radicals), and O2 −2 (peroxide). ROS has been a major factor for several mechanisms including cell wall damage due to ZnO-localized interaction, enhanced membrane permeability, internalization of NPs due to loss of proton motive force and uptake of toxic dissolved zinc ions. These have led to mitochondria weakness, intracellular outflow, and release in gene expression of oxidative stress which caused eventual cell growth inhibition and cell death. In some cases, enhanced antibacterial activity can be attributed to surface defects on ZnO abrasive surface texture. One functional application of the ZnO antibacterial bioactivity was discussed in food packaging industry where ZnO-NPs are used as an antibacterial agent toward foodborne diseases. Proper incorporation of ZnO-NPs into packaging materials can cause interaction with foodborne pathogens, thereby releasing NPs onto food surface where they come in contact with bad bacteria and cause the bacterial death and/or inhibition.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Highly active ZnO modified g-C3N4 Nanocomposite for dye degradation under UV and Visible Light with enhanced stability and antimicrobial activity

TL;DR: In this article, a photo-catalytically active nanocomposite was used for the degradation of textile dye Direct Blue 199 under UV and visible irradiation, and the results showed that photocatalytic activity of the ZnO/g-C 3 N 4 nanocompositionite was much higher than that of pure g-C3 N 4 via photodegradation of DirectBlue 199 under irradiation.
Journal ArticleDOI

Antibacterial activity of zinc oxide nanoparticles synthesized by solochemical process

TL;DR: In this article, the antibacterial activity of ZnO-NPs obtained by a solochemical process against important human foodborne pathogens: Staphylococcus aureus, Salmonella Typhimurium, Bacillus cereus and Pseudomonas aeruginosa.
Journal ArticleDOI

Exposure to air pollutants and the gut microbiota: a potential link between exposure, obesity, and type 2 diabetes

TL;DR: A review of recent findings regarding the impact of inhaled and ingested air pollutants on the gut microbiota suggests that such exposure-induced alterations to the gut microbiome may contribute to increased risk for obesity and type 2 diabetes through inflammatory pathways.
Journal ArticleDOI

Deposition of Zinc Oxide on Different Polymer Textiles and Their Antibacterial Properties.

TL;DR: A surface modification of polyamide 6 (PA), polyethylene terephthalate (PET) and polypropylene (PP) textiles was performed using zinc oxide to obtain antibacterial layer and it was indicated that the rougher and more hydrophilic is the material, the more ZnO were deposited.
References
More filters
Journal ArticleDOI

A comprehensive review of zno materials and devices

TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Journal ArticleDOI

Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays

TL;DR: This approach has the potential of converting mechanical, vibrational, and/or hydraulic energy into electricity for powering nanodevices.
Journal ArticleDOI

Antimicrobial effects of silver nanoparticles

TL;DR: The results suggest that Ag nanoparticles can be used as effective growth inhibitors in various microorganisms, making them applicable to diverse medical devices and antimicrobial control systems.
Journal ArticleDOI

Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli.

TL;DR: This is the first comparative study on the bactericidal properties of silver nanoparticles of different shapes, and the results demonstrate thatsilver nanoparticles undergo a shape-dependent interaction with the gram-negative organism E. coli.
Journal ArticleDOI

Zinc oxide nanostructures: growth, properties and applications

TL;DR: In this paper, a review of various nanostructures of ZnO grown by the solid-vapour phase technique and their corresponding growth mechanisms is presented. And the application of nanobelts as nanosensors, nanocantilevers, field effect transistors and nanoresonators is demonstrated.
Related Papers (5)