scispace - formally typeset
Open AccessJournal ArticleDOI

Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism.

Reads0
Chats0
TLDR
This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination,ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration.
Abstract
Antibacterial activity of zinc oxide nanoparticles (ZnO-NPs) has received significant interest worldwide particularly by the implementation of nanotechnology to synthesize particles in the nanometer region. Many microorganisms exist in the range from hundreds of nanometers to tens of micrometers. ZnO-NPs exhibit attractive antibacterial properties due to increased specific surface area as the reduced particle size leading to enhanced particle surface reactivity. ZnO is a bio-safe material that possesses photo-oxidizing and photocatalysis impacts on chemical and biological species. This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination, ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration. Particular emphasize was given to bactericidal and bacteriostatic mechanisms with focus on generation of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), OH− (hydroxyl radicals), and O2 −2 (peroxide). ROS has been a major factor for several mechanisms including cell wall damage due to ZnO-localized interaction, enhanced membrane permeability, internalization of NPs due to loss of proton motive force and uptake of toxic dissolved zinc ions. These have led to mitochondria weakness, intracellular outflow, and release in gene expression of oxidative stress which caused eventual cell growth inhibition and cell death. In some cases, enhanced antibacterial activity can be attributed to surface defects on ZnO abrasive surface texture. One functional application of the ZnO antibacterial bioactivity was discussed in food packaging industry where ZnO-NPs are used as an antibacterial agent toward foodborne diseases. Proper incorporation of ZnO-NPs into packaging materials can cause interaction with foodborne pathogens, thereby releasing NPs onto food surface where they come in contact with bad bacteria and cause the bacterial death and/or inhibition.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Antibiotic-free combinational hyaluronic acid blend nanofibers for wound healing enhancement.

TL;DR: Combinational NFs showed the greatest healing efficacy of full thickness S. aureus inoculated incision wounds in rats in terms of bacterial inhibition following a single application, healing speed, and quality of skin structure recovery as verified by morphological, microbiological, and histopathological studies.
Book ChapterDOI

Use of Nanomaterials in Food Science

TL;DR: In this article, the use of nanoparticles in food science is discussed, and the authors describe how to use them in developing countries to develop drought-and pest-resistant crops, with maximized yield.
Journal ArticleDOI

Antimicrobial Wound Dressings as Potential Materials for Skin Tissue Regeneration

TL;DR: The obtained results suggest that the composite fibers based on zinc oxide and alginate are suitable for antimicrobial protection, are not toxic and may be useful for skin tissue regeneration if applied as a dressing.
Journal ArticleDOI

Phyto and hydrothermal synthesis of Fe 3 O 4 @ZnO core-shell nanoparticles using Azadirachta indica and its cytotoxicity studies

TL;DR: In this paper, a two-step synthesis of phyto and hydrothermal synthesis using Azadirachta indica (neem) leaves was performed to synthesize Fe3O4@ZnO core-shell nanoparticles.
Journal ArticleDOI

Development of Gracilaria vermiculophylla extract films containing zinc oxide nanoparticles and their application in smoked salmon packaging

TL;DR: In this article, the authors used extracts of Gracilaria vermiculophylla (GVE) and added zinc oxide nanoparticles (ZnONPs) to prepare the antibacterial films.
References
More filters
Journal ArticleDOI

A comprehensive review of zno materials and devices

TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Journal ArticleDOI

Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays

TL;DR: This approach has the potential of converting mechanical, vibrational, and/or hydraulic energy into electricity for powering nanodevices.
Journal ArticleDOI

Antimicrobial effects of silver nanoparticles

TL;DR: The results suggest that Ag nanoparticles can be used as effective growth inhibitors in various microorganisms, making them applicable to diverse medical devices and antimicrobial control systems.
Journal ArticleDOI

Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli.

TL;DR: This is the first comparative study on the bactericidal properties of silver nanoparticles of different shapes, and the results demonstrate thatsilver nanoparticles undergo a shape-dependent interaction with the gram-negative organism E. coli.
Journal ArticleDOI

Zinc oxide nanostructures: growth, properties and applications

TL;DR: In this paper, a review of various nanostructures of ZnO grown by the solid-vapour phase technique and their corresponding growth mechanisms is presented. And the application of nanobelts as nanosensors, nanocantilevers, field effect transistors and nanoresonators is demonstrated.
Related Papers (5)