scispace - formally typeset
Open AccessJournal ArticleDOI

Role of proline under changing environments: a review.

TLDR
Review of the literature indicates that a stressful environment results in an overproduction of proline in plants which in turn imparts stress tolerance by maintaining cell turgor or osmotic balance; stabilizing membranes thereby preventing electrolyte leakage; and bringing concentrations of reactive oxygen species within normal ranges, thus preventing oxidative burst in plants.
Abstract
When exposed to stressful conditions, plants accumulate an array of metabolites, particularly amino acids. Amino acids have traditionally been considered as precursors to and constituents of proteins, and play an important role in plant metabolism and development. A large body of data suggests a positive correlation between proline accumulation and plant stress. Proline, an amino acid, plays a highly beneficial role in plants exposed to various stress conditions. Besides acting as an excellent osmolyte, proline plays three major roles during stress, i.e., as a metal chelator, an antioxidative defense molecule and a signaling molecule. Review of the literature indicates that a stressful environment results in an overproduction of proline in plants which in turn imparts stress tolerance by maintaining cell turgor or osmotic balance; stabilizing membranes thereby preventing electrolyte leakage; and bringing concentrations of reactive oxygen species (ROS) within normal ranges, thus preventing oxidative burst ...

read more

Citations
More filters
Journal ArticleDOI

Phytase overexpression in Arabidopsis improves plant growth under osmotic stress and in combination with phosphate deficiency.

TL;DR: It is demonstrated that the modulation of PA improves plant growth under osmotic stress, likely via stimulation of enzymatic and non-enzymatic antioxidant systems, and that beside its regulatory role in phosphate homeostasis, PA may be also involved in fine tuning osmosis stress response in plants.
Journal ArticleDOI

Biofortification of soybean (Glycine max L.) with Se and Zn, and enhancing its physiological functions by spiking these elements to soil during flowering phase.

TL;DR: Joint Se/Zn application in increasing doses appeared to have a strong synergistic effect on accumulation of these elements in beans and enhanced the physiological functions of the soybean, which may significantly contribute to human health improvement in Se and Zn deficient regions.
Journal ArticleDOI

Identification of Factors Linked to Higher Water-Deficit Stress Tolerance in Amaranthus hypochondriacus Compared to Other Grain Amaranths and A. hybridus , Their Shared Ancestor

TL;DR: It is concluded that physiological modifications improved WDS in A. hypochondriacus by raising its water use efficiency and correlated with an enhanced osmotic adjustment (OA) and a stronger expression of abscisic acid (ABA) marker genes.
Journal ArticleDOI

NAC transcription factor expression, amino acid concentration and growth of elite rice cultivars upon salt stress

TL;DR: Both elite rice cultivars exhibit different expression patterns of NAC transcription factors as well as biochemical and physiological responses to salt stress, giving rise to better performance of Cotaxtla plants in comparison to Tres Ríos plants under the authors' experimental conditions.
References
More filters
Journal ArticleDOI

Oxidative stress, antioxidants and stress tolerance

TL;DR: Key steps of the signal transduction pathway that senses ROIs in plants have been identified and raise several intriguing questions about the relationships between ROI signaling, ROI stress and the production and scavenging ofROIs in the different cellular compartments.
Journal ArticleDOI

ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control

TL;DR: A detailed account of current knowledge of the biosynthesis, compartmentation, and transport of these two important antioxidants, with emphasis on the unique insights and advances gained by molecular exploration are provided.
Journal ArticleDOI

Roles of glycine betaine and proline in improving plant abiotic stress resistance

TL;DR: In this review article, numerous examples of successful application of these compounds to improve plant stress tolerance are presented and a better understanding of the mechanisms of action of exogenously applied GB and proline is expected to aid their effective utilization in crop production in stress environments.
Journal ArticleDOI

Proline: a multifunctional amino acid

TL;DR: The compartmentalization of proline biosynthesis, accumulation and degradation in the cytosol, chloroplast and mitochondria is discussed and the role of prolines in cellular homeostasis, including redox balance and energy status, is described.
Journal ArticleDOI

Genes and salt tolerance: bringing them together.

TL;DR: This review lists some candidate genes for salinity tolerance, and draws together hypotheses about the functions of these genes and the specific tissues in which they might operate.
Related Papers (5)
Trending Questions (2)
Why is proline important for turgur pressure regulation in plant?

Proline is important for turgor pressure regulation in plants as it helps maintain cell turgor or osmotic balance under stressful conditions.

What is the role of proline as a small-molecule metabolite biomarker?

The role of proline as a small-molecule metabolite biomarker is to act as an osmolyte, metal chelator, antioxidative defense molecule, and signaling molecule in plants under stress.