scispace - formally typeset
Open AccessDOI

Scalably Nanomanufactured Atomically Thin Materials‐Based Wearable Health Sensors

About
The article was published on 2021-11-23 and is currently open access. It has received 11 citations till now.

read more

Citations
More filters
Journal ArticleDOI

Element-Doped Mxenes: Mechanism, Synthesis, and Applications.

TL;DR: In this article , the authors comprehensively and critically discuss the syntheses, properties, and emerging applications of the growing family of heteroatom-doped MXenes materials, and present future opportunities and challenges for the study and application of multifunctional high-performance MXenes.
Journal ArticleDOI

Stress-deconcentrated ultrasensitive strain sensor with hydrogen-bonding-tuned fracture resilience for robust biomechanical monitoring

TL;DR: In this article , a stress-deconcentrated ultra-sensitive strain (SDUS) sensor with ultrahigh sensitivity (gauge factor up to 2.3 × 106) and a wide working range (0% −50%) via incorporating notch-insensitive elastic substrate and micro-crack-tunable conductive layer was developed.
Journal ArticleDOI

Recent advances in multifunctional materials for gas sensing applications

TL;DR: A comprehensive overview of the recent achievements in the application of sensors for different gas detection and indicates the current challenges and future outlooks in this field is provided in this paper , where a wide discussion of various materials-based gas sensors in near future can be attached to the Internet of Things to develop more rigid and highly sensitive gas leakage detectors to avoid accident risks and health threats.
Journal ArticleDOI

Curvilinear soft electronics by micromolding of metal nanowires in capillaries

TL;DR: In this paper , a micromolding-based method is reported for scalable printing of metal nanowires, which enables complex and highly conductive patterns on soft curvilinear and uneven substrates with high resolution and uniformity.
Journal ArticleDOI

High Throughput In–Situ Temperature Sensor Array with High Sensitivity and Excellent Linearity for Wireless Body Temperature Monitoring

TL;DR: In this paper , a flexible temperature sensor based on a porous graphene/polydimethylsiloxane sensing layer is developed, which exhibits high sensitivity of 5.203%°C−1 for temperature sensing between 30 and 70°C, and excellent linearity (R2
References
More filters
Journal ArticleDOI

Ammonia as a case study for the spontaneous ionization of a simple hydrogen-bonded compound

TL;DR: Experimental evidence is presented that the threshold pressure of ~120 GPa induces in molecular ammonia the process of autoionization to yet experimentally unknown ionic compound--ammonium amide, opening new possibilities for studying molecular interactions in hydrogen-bonded systems.
Journal ArticleDOI

Graphene: The New Two-Dimensional Nanomaterial

TL;DR: The status of graphene research is presented, which includes aspects related to synthesis, characterization, structure, and properties.
Journal ArticleDOI

Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis

TL;DR: This work bridges the technological gap between signal transduction, conditioning, processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing.
Journal ArticleDOI

Single-Layer MoS2 Phototransistors

TL;DR: The unique characteristics of incident-light control, prompt photoswitching, and good photoresponsivity from the MoS(2) phototransistor pave an avenue to develop the single-layer semiconducting materials for multifunctional optoelectronic device applications in the future.
Journal ArticleDOI

Photodetectors based on graphene, other two-dimensional materials and hybrid systems

TL;DR: An overview and evaluation of state-of-the-art photodetectors based on graphene, other two-dimensional materials, and hybrid systems based on the combination of differentTwo-dimensional crystals or of two- dimensional crystals and other (nano)materials, such as plasmonic nanoparticles, semiconductors, quantum dots, or their integration with (silicon) waveguides are provided.
Related Papers (5)