scispace - formally typeset
Journal ArticleDOI

The contentious nature of soil organic matter

Johannes Lehmann, +1 more
- 23 Nov 2015 - 
- Vol. 528, Iss: 7580, pp 60-68
Reads0
Chats0
TLDR
It is argued that the available evidence does not support the formation of large-molecular-size and persistent ‘humic substances’ in soils, and instead soil organic matter is a continuum of progressively decomposing organic compounds.
Abstract
Instead of containing stable and chemically unique ‘humic substances’, as has been widely accepted, soil organic matter is a mixture of progressively decomposing organic compounds; this has broad implications for soil science and its applications. The exchange of nutrients, energy and carbon between soil organic matter, the soil environment, aquatic systems and the atmosphere is important for agricultural productivity, water quality and climate. Long-standing theory suggests that soil organic matter is composed of inherently stable and chemically unique compounds. Here we argue that the available evidence does not support the formation of large-molecular-size and persistent ‘humic substances’ in soils. Instead, soil organic matter is a continuum of progressively decomposing organic compounds. We discuss implications of this view of the nature of soil organic matter for aquatic health, soil carbon–climate interactions and land management. Soil organic matter contains a large portion of the world's carbon and plays an important role in maintaining productive soils and water quality. Nevertheless, a consensus on the nature of soil organic matter is lacking. Johannes Lehmann and Markus Kleber argue that soil organic matter should no longer be seen as large and persistent, chemically unique substances, but as a continuum of progressively decomposing organic compounds.

read more

Citations
More filters
Journal ArticleDOI

Ensemble modelling, uncertainty and robust predictions of organic carbon in long‐term bare‐fallow soils

TL;DR: This work evaluated SOC simulated from an ensemble of 26 process-based C models by comparing simulations to experimental data from seven long-term bare-fallow (vegetation-free) plots at six sites, and addressed uncertainties from different modelling approaches with or without spin-up initialisation of SOC.
Journal ArticleDOI

Microplastics have shape- and polymer-dependent effects on soil aggregation and organic matter loss – an experimental and meta-analytical approach

TL;DR: In this article, a meta-analysis on published literature and a lab experiment focusing on microplastic shapes-and polymer-induced effects on soil aggregation and organic matter decomposition was conducted.
Journal ArticleDOI

Protonation-dependent heterogeneity in fluorescent binding sites in sub-fractions of fulvic acid using principle component analysis and two-dimensional correlation spectroscopy.

TL;DR: Heterogeneous distributions of proton binding sites within sub-fractions of fulvic acid were investigated by use of synchronous fluorescence spectra, combined with principle component analysis (PCA) and two-dimensional correlation spectroscopy (2D-COS) and showed superior potential for further applications in exploring complex interactions between dissolved organic matter and contaminants in engineered and natural environments.
References
More filters
Book

The Structure of Scientific Revolutions

TL;DR: The Structure of Scientific Revolutions as discussed by the authors is a seminal work in the history of science and philosophy of science, and it has been widely cited as a major source of inspiration for the present generation of scientists.

Climate change 2007: the physical science basis

TL;DR: The first volume of the IPCC's Fourth Assessment Report as mentioned in this paper was published in 2007 and covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.
Journal ArticleDOI

Soil carbon sequestration impacts on global climate change and food security.

TL;DR: In this article, the carbon sink capacity of the world’s agricultural and degraded soils is 50 to 66% of the historic carbon loss of 42 to 78 gigatons of carbon.
Book

HUmus Chemistry Genesis, Composition, Reactions

TL;DR: In this paper, the authors present an analysis of organic matter in soil using NMR Spectroscopy and analytical pyrolysis, showing that organic matter is composed of nitrogen and ammonium.
Related Papers (5)
Trending Questions (1)
What are the types of soil that suffer from a lack of organic matter?

The types of soil that suffer from a lack of organic matter are not mentioned in the provided information.