scispace - formally typeset
Open AccessJournal ArticleDOI

Topological defects in epithelia govern cell death and extrusion.

Reads0
Chats0
TLDR
A mechanism for apoptotic cell extrusion is proposed: spontaneously formed topological defects in epithelia govern cell fate, and the ability to control extrusion hotspots by geometrically inducing defects through microcontact printing of patterned monolayers is demonstrated.
Abstract
Epithelial tissues (epithelia) remove excess cells through extrusion, preventing the accumulation of unnecessary or pathological cells. The extrusion process can be triggered by apoptotic signalling, oncogenic transformation and overcrowding of cells. Despite the important linkage of cell extrusion to developmental, homeostatic and pathological processes such as cancer metastasis, its underlying mechanism and connections to the intrinsic mechanics of the epithelium are largely unexplored. We approach this problem by modelling the epithelium as an active nematic liquid crystal (that has a long range directional order), and comparing numerical simulations to strain rate and stress measurements within monolayers of MDCK (Madin Darby canine kidney) cells. Here we show that apoptotic cell extrusion is provoked by singularities in cell alignments in the form of comet-shaped topological defects. We find a universal correlation between extrusion sites and positions of nematic defects in the cell orientation field in different epithelium types. The results confirm the active nematic nature of epithelia, and demonstrate that defect-induced isotropic stresses are the primary precursors of mechanotransductive responses in cells, including YAP (Yes-associated protein) transcription factor activity, caspase-3-mediated cell death, and extrusions. Importantly, the defect-driven extrusion mechanism depends on intercellular junctions, because the weakening of cell-cell interactions in an α-catenin knockdown monolayer reduces the defect size and increases both the number of defects and extrusion rates, as is also predicted by our model. We further demonstrate the ability to control extrusion hotspots by geometrically inducing defects through microcontact printing of patterned monolayers. On the basis of these results, we propose a mechanism for apoptotic cell extrusion: spontaneously formed topological defects in epithelia govern cell fate. This will be important in predicting extrusion hotspots and dynamics in vivo, with potential applications to tissue regeneration and the suppression of metastasis. Moreover, we anticipate that the analogy between the epithelium and active nematic liquid crystals will trigger further investigations of the link between cellular processes and the material properties of epithelia.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Mechanobiology of collective cell behaviours.

TL;DR: This work has shown that the physical properties of the cellular environment, which include matrix stiffness, topography, geometry and the application of external forces, can alter collective cell behaviours, tissue organization and cell-generated forces.
Journal ArticleDOI

Non-Hermitian Physics

TL;DR: In this article, a review of non-Hermitian classical and quantum physics can be found, with an overview of how diverse classical systems, ranging from photonics, mechanics, electrical circuits, acoustics to active matter, can be used to simulate non-hermitian wave physics.
Journal ArticleDOI

Particle Image Velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab

TL;DR: In this paper, the authors present several improvements that were implemented in PIVlab, enhancing the robustness of displacement estimates, and evaluate the benefit of these improvements using experimental images and synthetic images of particle and non-particle textures.
Journal ArticleDOI

Tensile Forces and Mechanotransduction at Cell-Cell Junctions.

TL;DR: Progress in characterising the forces present at junctions in physiological conditions is discussed; the cellular mechanisms that generate intrinsic tension and detect changes in tension are discussed; and, finally, how tissue integrity is maintained in the face of junctional stresses is considered.
Journal ArticleDOI

The 2020 motile active matter roadmap

TL;DR: The 2019 motile active matter roadmap of Journal of Physics: Condensed Matter addresses the current state of the art of the field and provides guidance for both students as well as established scientists in their efforts to advance this fascinating area as discussed by the authors.
References
More filters
Journal ArticleDOI

Role of YAP/TAZ in mechanotransduction

TL;DR: YAP/TAZ are identified as sensors and mediators of mechanical cues instructed by the cellular microenvironment and are functionally required for differentiation of mesenchymal stem cells induced by ECM stiffness and for survival of endothelial cells regulated by cell geometry.
Book

The Structure and Rheology of Complex Fluids

TL;DR: In this article, the authors present a comprehensive overview of the properties and properties of complex fluids and their properties in terms of physics, chemistry, physics theory, and physics of complex fluid properties.
Journal ArticleDOI

Analysis of discrete ill-posed problems by means of the L-curve

Per Christian Hansen
- 01 Dec 1992 - 
TL;DR: The main purpose of this paper is to advocate the use of the graph associated with Tikhonov regularization in the numerical treatment of discrete ill-posed problems, and to demonstrate several important relations between regularized solutions and the graph.
Journal ArticleDOI

New development in freefem

TL;DR: First the freefem++ software deals with mesh adaptation for problems in two and three dimension, second, it solves numerically a problem with phase change and natural convection, and finally to show the possibilities for HPC the software solves a Laplace equation by a Schwarz domain decomposition problem on parallel computer.
Journal ArticleDOI

Elucidation of a universal size-control mechanism in Drosophila and mammals.

TL;DR: It is demonstrated that a single phosphorylation site in Yki mediates the growth-suppressive output of the Hippo pathway, and that its dysregulation leads to tumorigenesis, uncovering a universal size-control mechanism in metazoan.
Related Papers (5)
Trending Questions (1)
What are the implications of the paper investigating Voltage-dependent volume regulation controls epithelial cell extrusion and morphology?

The provided paper does not investigate "Voltage-dependent volume regulation controls epithelial cell extrusion and morphology." The paper is about topological defects in epithelia governing cell death and extrusion.