scispace - formally typeset
Journal ArticleDOI

Transferred wrinkled Al2O3 for highly stretchable and transparent graphene–carbon nanotube transistors

Reads0
Chats0
TLDR
The fabrication of highly stretchable and transparent field-effect transistors combining graphene/single-walled carbon nanotube (SWCNT) electrodes and a SWCNT-network channel with a geometrically wrinkled inorganic dielectric layer that retained performance under strains as high as 20% without appreciable leakage current increases or physical degradation is reported.
Abstract
Despite recent progress in the production of bendable thin-film transistors, their development is limited by leakage currents and fragile inorganic oxides. Combining graphene and single-walled carbon nanotube electrodes with a geometrically wrinkled inorganic layer, highly stretchable and transparent field-effect transistors have now been demonstrated.

read more

Citations
More filters
Journal ArticleDOI

Recent advances in stretchable field-effect transistors

TL;DR: A detailed overview of the recent progress in s-FET fabrication and applications can be found in this article, which provides a guideline for the further development of sFETs with high stretchability and electrical performance in the near future.
Journal ArticleDOI

Visible Light Detection and Memory Capabilities in MgO/HfO₂ Bilayer-Based Transparent Structure for Photograph Sensing

TL;DR: In this article, the authors proposed an ITO/MgO/HfO2/ITO bilayer (BL) transparent resistive switching (RS) device that exhibits a photograph response through defect engineering in the switching layer, which resulted in a subsurface active RS location in formed conductive filament, thus reducing the loss of oxygen through the polycrystalline electrode.
Journal ArticleDOI

Wrinkles in Electronics

TL;DR: The development of smooth, continuous, micro/nanoscale wrinkles could offer transformative fundamental and technological opportunities in electronics as discussed by the authors, which can tune or enhance the functionalities or performances of electronic devices and open up new opportunities for both fundamental studies and practical applications in robotics, sensors, actuators, solar cells, and other consumable devices.
Journal ArticleDOI

Nanomeshed Si nanomembranes

TL;DR: Feng et al. as mentioned in this paper introduced the concept of nanomeshed semiconductor nanomembrane which can be regarded almost as intrinsically stretchable to conventional microelectronic layouts, and demonstrated a high electron mobility of 50 cm2/V·s, and moderate stretchability with a one-time strain of 25% and cyclic strain of 14% after stretching for 1000 cycles, further improvable with optimized nanomesh designs.
References
More filters
Journal ArticleDOI

Large-scale pattern growth of graphene films for stretchable transparent electrodes

TL;DR: The direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers is reported, and two different methods of patterning the films and transferring them to arbitrary substrates are presented, implying that the quality of graphene grown by chemical vapours is as high as mechanically cleaved graphene.
Journal ArticleDOI

Roll-to-roll production of 30-inch graphene films for transparent electrodes

TL;DR: The roll-to-roll production and wet-chemical doping of predominantly monolayer 30-inch graphene films grown by chemical vapour deposition onto flexible copper substrates are reported, showing high quality and sheet resistances superior to commercial transparent electrodes such as indium tin oxides.
Journal ArticleDOI

Transfer of large-area graphene films for high-performance transparent conductive electrodes

TL;DR: An improved transfer process of large-area graphene grown on Cu foils by chemical vapor deposition is reported on, finding that the transferred graphene films have high electrical conductivity and high optical transmittance that make them suitable for transparent conductive electrode applications.
Journal ArticleDOI

Carbon-based electronics.

TL;DR: This work reviews the progress that has been made with carbon nanotubes and, more recently, graphene layers and nanoribbons and suggests that it could be possible to make both electronic and optoelectronic devices from the same material.
PatentDOI

Stretchable form of single crystal silicon for high performance electronics on rubber substrates

TL;DR: In this article, the authors present stretchable and printable semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed, or otherwise deformed.
Related Papers (5)