scispace - formally typeset
Journal ArticleDOI

Valence bond description of antiferromagnetic coupling in transition metal dimers

Louis Noodleman
- 15 May 1981 - 
- Vol. 74, Iss: 10, pp 5737-5743
Reads0
Chats0
TLDR
In this paper, a single configuration model containing nonorthogonal magnetic orbitals is developed to represent the important features of the antiferromagnetic state of a transition metal dimer.
Abstract
A single configuration model containing nonorthogonal magnetic orbitals is developed to represent the important features of the antiferromagnetic state of a transition metal dimer. A state of mixed spin symmetry and lowered space symmetry is constructed which has both conceptual and practical computational value. Either unrestricted Hartree–Fock theory or spin polarized density functional theory, e.g., Xα theory, can be used to generate the mixed spin state wave function. The most important consequence of the theory is that the Heisenberg exchange coupling constant J can be calculated simply from the energies of the mixed spin state and the highest pure spin multiplet.

read more

Citations
More filters
Journal ArticleDOI

Studying the Origin of the Antiferromagnetic to Spin-Canting Transition in the β-p-NCC6F4CNSSN. Molecular Magnet

TL;DR: The chi(T) curve, computed below 36 K at the limit of zero magnetic field by using the 12 K magnetic topology, reproduces the shape of the residual magnetic susceptibility (having subtracted the contribution to the magnetization arising from spin canting).
Journal ArticleDOI

Tuning spin-spin coupling in quinonoid-bridged dicopper(II) complexes through rational bridge variation.

TL;DR: The results demonstrate how bridge-mediated spin-spin coupling in quinone-bridged metal complexes can be strongly tuned by a rational design of the bridging ligand employing the [O] for [NR] isoelectronic analogy.
Journal ArticleDOI

Trinuclear Terpyridine Frustrated Spin System with a MnIV3O4 Core: Synthesis, Physical Characterization, and Quantum Chemical Modeling of Its Magnetic Properties

TL;DR: Density functional theory calculations based on the broken symmetry approach reproduce the magnetic properties of 5 very well, thus confirming the capability of this quantum chemical method for predicting the magnetic behavior of clusters involving more than two metal ions.
Journal ArticleDOI

Linear and nonlinear optical properties of a series of Ni-dithiolene derivatives.

TL;DR: This work discusses how the diradicaloid character (DC) of Ni(SCH)(4) significantly affects its NLO properties, and how the quasidegeneracy of the two lowest-energy singlet states, the clear DC nature of the former, and the very large number of low-lying states enhance the N LO properties values.
References
More filters
Journal ArticleDOI

New Approach to the Theory of Superexchange Interactions

TL;DR: In this article, the theory of indirect exchange in poor conductors is examined from a new viewpoint in which the $d$ (or $f$) shell electrons are placed in wave functions assumed to be exact solutions of the problem of a single $d-electron in the presence of the full diamagnetic lattice.
Journal ArticleDOI

Orbital interactions in metal dimer complexes

TL;DR: In this paper, the effect of geometrical distortions, electronegativity, and variation of substituents on the magnetic interaction in dimeric systems is examined in detail for singly bridged L,M-X-ML, (n = 3, 4, 5); Cu~C16~ and other doubly bridging species where the bridging ligands are halogens, OR, pyridine N-oxides, oxalate, squarate; and the acetate bridged dimers C u ~ (R C 0 0 ) 4.
Journal ArticleDOI

Quantum Theory of Many-Particle Systems. III. Extension of the Hartree-Fock Scheme to Include Degenerate Systems and Correlation Effects

TL;DR: In this paper, it was shown that if the total wave function is approximated by a projection of a single determinant, the description of the system may be reduced to the ordinary Hartree-Fock scheme treating this determinant.
Book ChapterDOI

Scattered-Wave Theory of the Chemical Bond

TL;DR: In the self-consistent field (SCF)-Xα scattered-wave model that is also a first-principle technique, there is no basis set problem because Schrodinger's equation for an Xα potential is numerically integrated as discussed by the authors.
Related Papers (5)