scispace - formally typeset
Open AccessProceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TLDR
In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract
In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

read more

Citations
More filters
Book ChapterDOI

Graph R-CNN for Scene Graph Generation

TL;DR: A novel scene graph generation model called Graph R-CNN, that is both effective and efficient at detecting objects and their relations in images, is proposed and a new evaluation metric is introduced that is more holistic and realistic than existing metrics.
Journal ArticleDOI

Convolutional Neural Network With Data Augmentation for SAR Target Recognition

TL;DR: The capability of a deep convolutional neural network (CNN) combined with three types of data augmentation operations in SAR target recognition is investigated, showing that it is a practical approach for target recognition in challenging conditions of target translation, random speckle noise, and missing pose.
Posted Content

BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation

TL;DR: In this article, a method called BoxSup is proposed to generate region proposals and then train a convolutional network with bounding box annotations to achieve state-of-the-art results on semantic segmentation.
Proceedings ArticleDOI

Learning Texture Transformer Network for Image Super-Resolution

TL;DR: A novel Texture Transformer Network for Image Super-Resolution (TTSR), in which the LR and Ref images are formulated as queries and keys in a transformer, respectively, which achieves significant improvements over state-of-the-art approaches on both quantitative and qualitative evaluations.
Journal ArticleDOI

Cost-Effective Active Learning for Deep Image Classification

TL;DR: This paper proposes a novel active learning (AL) framework, which is capable of building a competitive classifier with optimal feature representation via a limited amount of labeled training instances in an incremental learning manner and incorporates deep convolutional neural networks into AL.
References
More filters
Book ChapterDOI

I and J

Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

A and V.

Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Related Papers (5)