scispace - formally typeset
Open AccessProceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TLDR
In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract
In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

read more

Citations
More filters
Journal ArticleDOI

Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types

TL;DR: A framework for quasi real-time damage detection on video using the trained networks is developed and the robustness of the trained Faster R-CNN is evaluated and demonstrated using 11 new 6,000 × 4,000-pixel images taken of different structures.
Journal ArticleDOI

A survey on deep learning techniques for image and video semantic segmentation

TL;DR: A review on deep learning methods for semantic segmentation applied to various application areas and points out a set of promising future works to help researchers decide which are the ones that best suit their needs and goals.
Journal ArticleDOI

Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks

TL;DR: This study corroborates that very deep CNNs with effective training mechanisms can be employed to solve complicated medical image analysis tasks, even with limited training data.
Book ChapterDOI

Is Faster R-CNN Doing Well for Pedestrian Detection?

TL;DR: A very simple but effective baseline for pedestrian detection, using an RPN followed by boosted forests on shared, high-resolution convolutional feature maps, presenting competitive accuracy and good speed.
Proceedings Article

ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness

TL;DR: In this paper, the same standard architecture that learns a texture-based representation on ImageNet is able to learn a shapebased representation instead when trained on "Stylized-ImageNet", a stylized version of ImageNet.
References
More filters
Book ChapterDOI

I and J

Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

A and V.

Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Related Papers (5)