scispace - formally typeset
Open AccessProceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TLDR
In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract
In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

read more

Citations
More filters
Book ChapterDOI

Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation

TL;DR: This work extends DeepLabv3 by adding a simple yet effective decoder module to refine the segmentation results especially along object boundaries and applies the depthwise separable convolution to both Atrous Spatial Pyramid Pooling and decoder modules, resulting in a faster and stronger encoder-decoder network.
Proceedings ArticleDOI

Learning Spatiotemporal Features with 3D Convolutional Networks

TL;DR: The learned features, namely C3D (Convolutional 3D), with a simple linear classifier outperform state-of-the-art methods on 4 different benchmarks and are comparable with current best methods on the other 2 benchmarks.
Proceedings ArticleDOI

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

TL;DR: SRGAN as mentioned in this paper proposes a perceptual loss function which consists of an adversarial loss and a content loss, which pushes the solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images.
Book ChapterDOI

Perceptual Losses for Real-Time Style Transfer and Super-Resolution

TL;DR: In this paper, the authors combine the benefits of both approaches, and propose the use of perceptual loss functions for training feed-forward networks for image style transfer, where a feedforward network is trained to solve the optimization problem proposed by Gatys et al. in real-time.
Proceedings Article

Spatial transformer networks

TL;DR: This work introduces a new learnable module, the Spatial Transformer, which explicitly allows the spatial manipulation of data within the network, and can be inserted into existing convolutional architectures, giving neural networks the ability to actively spatially transform feature maps.
References
More filters
Book ChapterDOI

I and J

Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

A and V.

Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Related Papers (5)