scispace - formally typeset
Open AccessProceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TLDR
In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract
In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

read more

Citations
More filters
Journal ArticleDOI

Using Deep Learning for Image-Based Plant Disease Detection

TL;DR: In this article, a deep convolutional neural network was used to identify 14 crop species and 26 diseases (or absence thereof) using a public dataset of 54,306 images of diseased and healthy plant leaves collected under controlled conditions.
Proceedings ArticleDOI

The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes

TL;DR: This paper generates a synthetic collection of diverse urban images, named SYNTHIA, with automatically generated class annotations, and conducts experiments with DCNNs that show how the inclusion of SYnTHIA in the training stage significantly improves performance on the semantic segmentation task.
Journal ArticleDOI

Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer.

Babak Ehteshami Bejnordi, +73 more
- 12 Dec 2017 - 
TL;DR: In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints.
Journal ArticleDOI

Deep learning in agriculture: A survey

TL;DR: A survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges indicates that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.
Journal ArticleDOI

Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources

TL;DR: The challenges of using deep learning for remote-sensing data analysis are analyzed, recent advances are reviewed, and resources are provided that hope will make deep learning in remote sensing seem ridiculously simple.
References
More filters
Book ChapterDOI

I and J

Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

A and V.

Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Related Papers (5)