scispace - formally typeset
Open AccessProceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

Reads0
Chats0
TLDR
In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract
In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

read more

Citations
More filters
Proceedings ArticleDOI

Relation Networks for Object Detection

TL;DR: In this article, the authors propose an object relation module to model relations between objects, which is shown effective on improving object recognition and duplicate removal steps in the modern object detection pipeline.
Proceedings ArticleDOI

Neural Module Networks

TL;DR: The authors decomposes questions into their linguistic substructures, and uses these structures to dynamically instantiate modular networks (with reusable components for recognizing dogs, classifying colors, etc.). The resulting compound networks are jointly trained.
Journal ArticleDOI

Deep Learning Applications in Medical Image Analysis

TL;DR: This review introduces the machine learning algorithms as applied to medical image analysis, focusing on convolutional neural networks, and emphasizing clinical aspects of the field, covering key research areas and applications of medical image classification, localization, detection, segmentation, and registration.
Book ChapterDOI

PSANet: Point-wise Spatial Attention Network for Scene Parsing

TL;DR: The point-wise spatial attention network (PSANet) is proposed to relax the local neighborhood constraint and achieves top performance on various competitive scene parsing datasets, including ADE20K, PASCAL VOC 2012 and Cityscapes, demonstrating its effectiveness and generality.
Posted Content

Large Kernel Matters -- Improve Semantic Segmentation by Global Convolutional Network

TL;DR: In this paper, a Global Convolutional Network (GCN) is proposed to address both the classification and localization issues for the semantic segmentation, which achieves state-of-the-art performance on two public benchmarks.
References
More filters
Book ChapterDOI

I and J

Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

A and V.

Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Related Papers (5)