scispace - formally typeset
Open AccessProceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TLDR
In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract
In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

read more

Citations
More filters
Proceedings ArticleDOI

Deep Learning with Low Precision by Half-Wave Gaussian Quantization

TL;DR: An half-wave Gaussian quantizer (HWGQ) is proposed for forward approximation and shown to have efficient implementation, by exploiting the statistics of of network activations and batch normalization operations, and to achieve much closer performance to full precision networks than previously available low-precision networks.
Journal ArticleDOI

Residual Dense Network for Image Restoration

TL;DR: Zhang et al. as mentioned in this paper proposed a residual dense block (RDB) to extract abundant local features via densely connected convolutional layers, which further allows direct connections from the state of preceding RDB to all the layers of current RDB, leading to a contiguous memory mechanism.
Journal ArticleDOI

Deep learning on image denoising: An overview.

TL;DR: A comparative study of deep techniques in image denoising by classifying the deep convolutional neural networks for additive white noisy images, the deep CNNs for real noisy images; the deepCNNs for blind Denoising and the deep network for hybrid noisy images.
Posted Content

Revisiting Small Batch Training for Deep Neural Networks

Dominic Masters, +1 more
- 20 Apr 2018 - 
TL;DR: The collected experimental results show that increasing the mini-batch size progressively reduces the range of learning rates that provide stable convergence and acceptable test performance, which contrasts with recent work advocating the use ofmini-batch sizes in the thousands.
Journal ArticleDOI

Convergence of Edge Computing and Deep Learning: A Comprehensive Survey

TL;DR: In this paper, a survey on the relationship between edge intelligence and intelligent edge computing is presented, and the practical implementation methods and enabling technologies, namely DL training and inference in the customized edge computing framework, challenges and future trends of more pervasive and fine-grained intelligence.
References
More filters
Book ChapterDOI

I and J

Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

A and V.

Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Related Papers (5)