scispace - formally typeset
Open AccessProceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TLDR
In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract
In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

read more

Citations
More filters
Posted Content

Salient Object Detection in the Deep Learning Era: An In-Depth Survey

TL;DR: This paper reviews deep SOD algorithms from different perspectives, including network architecture, level of supervision, learning paradigm, and object-/instance-level detection, and looks into the generalization and difficulty of existing SOD datasets.
Posted Content

TabNet: Attentive Interpretable Tabular Learning

TL;DR: It is demonstrated that TabNet outperforms other neural network and decision tree variants on a wide range of non-performance-saturated tabular datasets and yields interpretable feature attributions plus insights into the global model behavior.
Book ChapterDOI

Layer-Wise Relevance Propagation: An Overview

TL;DR: This chapter gives a concise introduction to LRP with a discussion of how to implement propagation rules easily and efficiently, how the propagation procedure can be theoretically justified as a ‘deep Taylor decomposition’, how to choose the propagation rules at each layer to deliver high explanation quality, and how LRP can be extended to handle a variety of machine learning scenarios beyond deep neural networks.
Book ChapterDOI

Out of Time: Automated Lip Sync in the Wild

TL;DR: The goal of this work is to determine the audio-video synchronisation between mouth motion and speech in a video.
Proceedings Article

A Theoretical Analysis of Contrastive Unsupervised Representation Learning

TL;DR: In contrastive learning as mentioned in this paper, the inner product of representations of similar pairs with each other is used to learn feature representations that are broadly useful in downstream classification tasks, and a theoretical framework for analyzing them is presented.
References
More filters
Book ChapterDOI

I and J

Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

A and V.

Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Related Papers (5)