scispace - formally typeset
Search or ask a question

Showing papers on "Babesia published in 2021"


Journal ArticleDOI
TL;DR: A review of the epidemiology of human babesiosis can be found in this paper, where the authors discuss epidemiologic tools used to monitor disease location and frequency; demographics and modes of transmission; the location of human Babesiosis; the causative Babesia species in the Americas, Europe, Asia, Africa, and Australia; the primary clinical characteristics associated with each of these infections; and the increasing global health burden of this disease.
Abstract: Babesiosis is an emerging tick-borne disease caused by intraerythrocytic protozoa that are primarily transmitted by hard-bodied (Ixodid) ticks and rarely through blood transfusion, perinatally, and organ transplantation. More than 100 Babesia species infect a wide spectrum of wild and domestic animals worldwide and six have been identified as human pathogens. Babesia microti is the predominant species that infects humans, is found throughout the world, and causes endemic disease in the United States and China. Babesia venatorum and Babesia crassa-like agent also cause endemic disease in China. Babesia divergens is the predominant species in Europe where fulminant cases have been reported sporadically. The number of B. microti infections has been increasing globally in recent decades. In the United States, more than 2000 cases are reported each year, although the actual number is thought to be much higher. In this review of the epidemiology of human babesiosis, we discuss epidemiologic tools used to monitor disease location and frequency; demographics and modes of transmission; the location of human babesiosis; the causative Babesia species in the Americas, Europe, Asia, Africa, and Australia; the primary clinical characteristics associated with each of these infections; and the increasing global health burden of this disease.

33 citations


Journal ArticleDOI
TL;DR: B. burgdorferi s.s. was the most prevalent and widespread pathogen and A. phagocytophilum or B. microti were most common in the Northeast and occurred at rates higher than expected based on rates of single infections in that region.

33 citations


Journal ArticleDOI
TL;DR: In this paper, a literature survey and 1,120 distinct georeferenced records are presented for bat-specialist soft ticks occurring in the Western Palearctic (chiefly Europe, North Africa, and the Middle East).
Abstract: The soft ticks (Ixodida: Argasidae) are ectoparasites of terrestrial vertebrates with a wide geographic distribution, occurring on all continents. These ticks are obligate blood-feeders, most of them show high degrees of host-specialization and several species in arid and tropical regions are important parasites of livestock and men. Species commonly occurring on domestic animals and man are generally well-known, with many studies focusing on their ecology, distribution or vectorial role. However, wildlife-specialist soft ticks are less studied. Nearly half of all soft tick species are bat specialists, with five species (Carios vespertilionis, Chiropterargas boueti, Chiropterargas confusus, Reticulinasus salahi, and Secretargas transgariepinus) occurring in the Western Palearctic. There is no comprehensive study on the distribution, hosts or pathogens in these soft ticks, although most species were shown to carry several viral, bacterial, or protozoan pathogens and also to occasionally infest humans. Based on a literature survey and 1,120 distinct georeferenced records, we present here the geographical range, host selection and vectorial potential for bat-specialist soft ticks occurring in the Western Palearctic (chiefly Europe, North Africa, and the Middle East). Carios vespertilionis shows the largest distribution range and was found on most host species, being ubiquitous wherever crevice-roosting bats occur. All the other species were located only in areas with Mediterranean climate, with Ch. boueti, Chiropteraragas confusus, and R. salahi are missing entirely from Europe. These three species have a host spectrum of bats roosting primarily in caves, while S. transgariepinus and Ca. vespertilionis is feeding primarily on crevice-roosting bat species. All but one of these soft tick species are known to feed on humans and may be vectors of important disease agents (Rickettsia spp., Borrelia spp., Bartonella spp., Ehrlichia spp., Babesia spp., several nairo-, and flaviviruses). As several crevice-roosting bat species show a continuous adaptation to human-altered areas, with certain species becoming common city-dwellers in the Western Palearctic, the study of bat specialist soft ticks is also important from an epidemiologic point of view.

22 citations


Journal ArticleDOI
TL;DR: In this paper, a comprehensive overview on the prevalence of vector-borne diseases in Iran and Pakistan where limited data are available was provided. But, the authors did not consider the zoonotic potential of some pathogens detected.
Abstract: Canine vector-borne diseases (CVBDs) are highly prevalent in tropical and subtropical countries, mainly due to favorable climate conditions and reduced adoption of preventive measures. This study aimed to provide a comprehensive overview on the prevalence of CVBDs in Iran and Pakistan where limited data are available. Blood samples were collected from 403 dogs from six provinces in Iran and Pakistan to assess the presence of pathogen DNA (i.e., Anaplasma spp., Coxiella burnetii, Ehrlichia spp., Rickettsia spp., Babesia spp., Hepatozoon spp., filarioids, and Leishmania spp.). Sera were also screened by an immunofluorescence antibody test for the detection of antibodies against Leishmania infantum. In total, 46.9% of dogs scored positive to Hepatozoon canis being the most frequently detected (41.4%), followed by Anaplasma platys (6.4%), Ehrlichia canis (3.4%), Rickettsia spp. (2.2%), Babesia vogeli (1.0%), and L. infantum (0.3%). A seroprevalence of 9.6% to anti-L. infantum IgG was also recorded. Data reported herein demonstrate that dogs from Iran and Pakistan are at a high risk of CVBDs, particularly of canine hepatozoonosis. Effective control strategies are advocated for minimizing the risk of infection in animals and humans, also in consideration of the zoonotic potential of some pathogens detected.

21 citations


Journal ArticleDOI
TL;DR: Differentially expressed genes that may play key biological roles and serve as suitable targets for the development of vaccines to control bovine babesiosis are discovered.

21 citations


Journal ArticleDOI
TL;DR: The current arsenal for the treatment of human babesiosis is limited and consists of combinations of atovaquone and azithromycin or clindamycin and quinine as mentioned in this paper.
Abstract: Babesiosis is an emerging tick-borne disease caused by apicomplexan parasites of the genus Babesia. With its increasing incidence worldwide and the risk of human-to-human transmission through blood transfusion, babesiosis is becoming a rising public health concern. The current arsenal for the treatment of human babesiosis is limited and consists of combinations of atovaquone and azithromycin or clindamycin and quinine. These combination therapies were not designed based on biological criteria unique to Babesia parasites, but were rather repurposed based on their well-established efficacy against other apicomplexan parasites. However, these compounds are associated with mild or severe adverse events and a rapid emergence of drug resistance, thus highlighting the need for new therapeutic strategies that are specifically tailored to Babesia parasites. Herein, we review ongoing babesiosis therapeutic and management strategies and their limitations, and further review current efforts to develop new, effective, and safer therapies for the treatment of this disease.

19 citations


Journal ArticleDOI
TL;DR: More than 100 Babesia spp. and sub-types have been found to cause human disease and B. microti genomics studies have only recently been initiated, however they already have yielded important new insights regarding the pathogen, population structure, and pathogenesis as mentioned in this paper.
Abstract: More than 100 Babesia spp. tick-borne parasites are known to infect mammalian and avian hosts. Babesia belong to Order Piroplasmid ranked in the Phylum Apicomplexa. Recent phylogenetic studies have revealed that of the three genera that constitute Piroplasmida, Babesia and Theileria are polyphyletic while Cytauxzoon is nested within a clade of Theileria. Several Babesia spp. and sub-types have been found to cause human disease. Babesia microti, the most common species that infects humans, is endemic in the Northeastern and upper Midwestern United States and is sporadically reported elsewhere in the world. Most infections are transmitted by Ixodid (hard-bodied) ticks, although they occasionally can be spread through blood transfusion and rarely via perinatal transmission and organ transplantation. Babesiosis most often presents as a mild to moderate disease, however infection severity ranges from asymptomatic to lethal. Diagnosis is usually confirmed by blood smear or polymerase chain reaction (PCR). Treatment consists of atovaquone and azithromycin or clindamycin and quinine and usually is effective but may be problematic in immunocompromised hosts. There is no human Babesia vaccine. B. microti genomics studies have only recently been initiated, however they already have yielded important new insights regarding the pathogen, population structure, and pathogenesis. Continued genomic research holds great promise for improving the diagnosis, management, and prevention of human babesiosis, and in particular, the identification of lineage-specific families of cell-surface proteins with potential roles in cytoadherence, immune evasion and pathogenesis.

18 citations


Journal ArticleDOI
TL;DR: A contribution of red foxes to the establishment of new foci of B. canis-infected D. reticulatus ticks in areas recently invaded by this tick species is suggested.

17 citations


Journal ArticleDOI
TL;DR: In this article, the authors used Reverse Line Blotting (RLB) and qPCR detection of Babesia species to test 25,849 questing I. ricinus ticks for co-infections with other tick borne pathogens.
Abstract: Human babesiosis in Europe has been attributed to infection with Babesia divergens and, to a lesser extent, with Babesia venatorum and Babesia microti, which are all transmitted to humans through a bite of Ixodes ricinus. These Babesia species circulate in the Netherlands, but autochthonous human babesiosis cases have not been reported so far. To gain more insight into the natural sources of these Babesia species, their presence in reservoir hosts and in I. ricinus was examined. Moreover, part of the ticks were tested for co-infections with other tick borne pathogens. In a cross-sectional study, qPCR-detection was used to determine the presence of Babesia species in 4611 tissue samples from 27 mammalian species and 13 bird species. Reverse line blotting (RLB) and qPCR detection of Babesia species were used to test 25,849 questing I. ricinus. Fragments of the 18S rDNA and cytochrome c oxidase subunit I (COI) gene from PCR-positive isolates were sequenced for confirmation and species identification and species-specific PCR reactions were performed on samples with suspected mixed infections. Babesia microti was found in two widespread rodent species: Myodes glareolus and Apodemus sylvaticus, whereas B. divergens was detected in the geographically restricted Cervus elaphus and Bison bonasus, and occasionally in free-ranging Ovis aries. B. venatorum was detected in the ubiquitous Capreolus capreolus, and occasionally in free-ranging O. aries. Species-specific PCR revealed co-infections in C. capreolus and C. elaphus, resulting in higher prevalence of B. venatorum and B. divergens than disclosed by qPCR detection, followed by 18S rDNA and COI sequencing. The non-zoonotic Babesia species found were Babesia capreoli, Babesia vulpes, Babesia sp. deer clade, and badger-associated Babesia species. The infection rate of zoonotic Babesia species in questing I. ricinus ticks was higher for Babesia clade I (2.6%) than Babesia clade X (1.9%). Co-infection of B. microti with Borrelia burgdorferi sensu lato and Neoehrlichia mikurensis in questing nymphs occurred more than expected, which reflects their mutual reservoir hosts, and suggests the possibility of co-transmission of these three pathogens to humans during a tick bite. The ubiquitous spread and abundance of B. microti and B. venatorum in their reservoir hosts and questing ticks imply some level of human exposure through tick bites. The restricted distribution of the wild reservoir hosts for B. divergens and its low infection rate in ticks might contribute to the absence of reported autochthonous cases of human babesiosis in the Netherlands.

17 citations


Journal ArticleDOI
TL;DR: It is concluded that host utilization by deer ticks is characterized by significant spatiotemporal diversity, which may confound efficacy tests of interventions targeting reservoir hosts.
Abstract: Deer tick-transmitted Borrelia burgdorferi sensu stricto (Lyme disease) and Babesia microti (babesiosis) increasingly burden public health across eastern North America. The white-footed mouse is considered the primary host for subadult deer ticks and the most important reservoir host for these and other disease agents. Local transmission is thought to be modulated by less reservoir-competent hosts, such as deer, diverting ticks from feeding on mice. We measured the proportion of mouse-fed or deer-fed host-seeking nymphs from 4 sites during 2 transmission seasons by blood meal remnant analysis using a new retrotransposon-based quantitative PCR (qPCR) assay. We then determined the host that was associated with the infection status of the tick. During the first year, the proportion of mouse-fed ticks ranged from 17% on mainland sites to 100% on an island, while deer-fed ticks ranged from 4% to 24%. The proportion of ticks feeding on mice and deer was greater from island sites than mainland sites (on average, 92% versus 43%). Mouse-fed ticks decreased significantly during year 2 in 3 of 4 sites (most were <20%), while deer-fed ticks increased for all sites (75% at one site). Overall, ticks were more likely to be infected when they had fed on mice (odds ratio [OR] of 2.4 and 1.6 for Borrelia and Babesia, respectively) and were less likely to be infected if they had fed on deer (OR, 0.8 and 0.4). We conclude that host utilization by deer ticks is characterized by significant spatiotemporal diversity, which may confound efficacy tests of interventions targeting reservoir hosts.IMPORTANCE White-footed mice are thought to be the most important reservoir host for the deer tick-transmitted pathogens that cause Lyme disease and human babesiosis because they are the primary host for immature ticks. Transmission would be reduced, however, if ticks feed on deer, which are not capable of infecting ticks with either pathogen. By directly measuring whether ticks had fed on either mice or deer using a new quantitative PCR (qPCR) assay to detect remnants of host DNA leftover from the larval blood meal, we demonstrate that host utilization by ticks varies significantly over time and space and that mice often feed fewer ticks than expected. This finding has implications for our understanding of the ecology of these diseases and for the efficacy of control measures.

16 citations


Journal ArticleDOI
TL;DR: In this article, the authors analyse adult Hyalomma ticks that were recently found in the Netherlands and show that these nymphs are able to develop to the adult stage, which can be sighted by vigilant citizens.
Abstract: Ticks of the genus Hyalomma, which are vectors for several tick-borne diseases, are occasionally found in areas outside their endemic range including northern parts of Europe. The objective of this study was to analyse adult Hyalomma ticks that were recently found in the Netherlands. Hyalomma ticks were morphologically identified. Cluster analysis, based upon sequence data (cox1 barcoding) for molecular identification, and pathogen detection were performed. Additionally, a cross-sectional survey of horses was conducted to actively search for Hyalomma ticks in summer 2019. Analysis of temperature was done to assess the possibility of (i) introduced engorged nymphs moulting to adults and (ii) establishment of populations in the Netherlands. Seventeen adult Hyalomma ticks (one in 2018, eleven in 2019, five in 2020) were found by citizens and reported. Fifteen ticks were detected on horses and two on humans. Twelve were identified as H. marginatum, one as H. rufipes and four, of which only photographic images were available, as Hyalomma sp. No Crimean-Congo haemorrhagic fever virus or Babesia/Theileria parasites were detected. One adult tick tested positive for Rickettsia aeschlimannii. In the cross-sectional horse survey, no Hyalomma ticks were found. Analysis of temperatures showed that engorged nymphs arriving on migratory birds in spring were able to moult to adults in 2019 and 2020, and that cumulative daily temperatures in the Netherlands were lower than in areas with established H. marginatum populations. Our results show that Hyalomma ticks are regularly introduced in the Netherlands as nymphs. Under the Dutch weather conditions, these nymphs are able to develop to the adult stage, which can be sighted by vigilant citizens. Only one human pathogen, Rickettsia aeschlimannii, was found in one of the ticks. The risk of introduction of tick-borne diseases via Hyalomma ticks on migratory birds is considered to be low. Establishment of permanent Hyalomma populations is considered unlikely under the current Dutch climatic conditions.

Journal ArticleDOI
TL;DR: In this paper, the authors performed a meta-analysis to estimate the distribution of Babesia spp. in questing ticks and found that Babesiosis is transmitted through infected ixodid ticks.
Abstract: Babesiosis caused by the Babesia species is a parasitic tick-borne disease. It threatens many mammalian species and is transmitted through infected ixodid ticks. To date, the global occurrence and distribution are poorly understood in questing ticks. Therefore, we performed a meta-analysis to estimate the distribution of the pathogen. A deep search for four electronic databases of the published literature investigating the prevalence of Babesia spp. in questing ticks was undertaken and obtained data analyzed. Our results indicate that in 104 eligible studies dating from 1985 to 2020, altogether 137,364 ticks were screened with 3069 positives with an estimated global pooled prevalence estimates (PPE) of 2.10%. In total, 19 different Babesia species of both human and veterinary importance were detected in 23 tick species, with Babesia microti and Ixodesricinus being the most widely reported Babesia and tick species, respectively. Regardless of species, adult ticks with 2.60% had the highest infection rates, while larvae had the least with 0.60%. Similarly, female ticks with 4.90% were infected compared to males with 3.80%. Nested-polymerase chain reaction (PCR) 2.80% had the highest prevalence among the molecular techniques employed. In conclusion, results obtained indicate that Babesia species are present in diverse questing tick species at a low prevalence, of which some are competent vectors.

Journal ArticleDOI
TL;DR: In this article, the authors used Reverse Line Blot hybridization (RLB) for simultaneous detection of tick-borne pathogens, including Babesia, Theileria, Anaplasma, Ehrlichia, and Rickettsia spp.

Journal ArticleDOI
TL;DR: In this paper, the authors describe the current state of Babesiosis with reference to the diversity of hosts, vectors, and parasite species in China and discuss the unique risks and knowledge gaps that should be taken into consideration for future Babesia research and control strategies.
Abstract: Babesiosis is a tick-borne disease with global impact caused by parasites of the phylum Apicomplexa, genus Babesia. Typically, acute bovine babesiosis (BB) is characterized by fever, anemia, hemoglobinuria, and high mortality. Surviving animals remain persistently infected and become reservoirs for parasite transmission. Bovids in China can be infected by one or more Babesia species endemic to the country, including B. bovis, B. bigemina, B. orientalis, B. ovata, B. major, B. motasi, B. U sp. Kashi and B. venatorum. The latter may pose a zoonotic risk. Occurrence of this wide diversity of Babesia species in China may be due to a combination of favorable ecological factors, such as the presence of multiple tick vectors, including Rhipicephalus and Hyalomma, the coexistence of susceptible bovid species, such as domestic cattle, yaks, and water buffalo, and the lack of efficient measures of tick control. BB is currently widespread in several regions of the country and a limiting factor for cattle production. While some areas appear to have enzootic stability, others have considerable cattle mortality. Research is needed to devise solutions to the challenges posed by uncontrolled BB. Critical research gaps include risk assessment for cattle residing in endemic areas, understanding factors involved in endemic stability, evaluation of parasite diversity and pathogenicity of regional Babesia species, and estimation of whether and how BB should be controlled in China. Research should allow the design of comprehensive interventions to improve cattle production, diminish the risk of human infections, and increase the availability of affordable animal protein for human consumption in China and worldwide. In this review, we describe the current state of BB with reference to the diversity of hosts, vectors, and parasite species in China. We also discuss the unique risks and knowledge gaps that should be taken into consideration for future Babesia research and control strategies.

Journal ArticleDOI
25 May 2021
TL;DR: Based on PCR testing and DNA sequencing of the 18S rRNA gene, the first report of B. odocoilei causing human babesiosis was made by.
Abstract: Human babesiosis is a life-threatening infectious disease that causes societal and economic impact worldwide. Several species of Babesia cause babesiosis in terrestrial vertebrates, including humans. A one-day clinic was held in Ontario, Canada, to see if a red blood cell parasite, which is present in blacklegged ticks, Ixodes scapularis, is present in humans. Based on PCR testing and DNA sequencing of the 18S rRNA gene, we unveiled B. odocoilei in two of 19 participants. DNA amplicons from these two patients are almost identical matches with the type strains of B. odocoilei in GenBank. In addition, the same two human subjects had the hallmark symptoms of human babesiosis, including night sweats, chills, fevers, and profound fatigue. Based on symptoms and molecular identification, we provide substantive evidence that B. odocoilei is pathogenic to humans. Dataset reveals that B. odocoilei serologically cross-reacts with Babesia duncani. Clinicians must realize that there are more than two Babesia spp. in North America that cause human babesiosis. This discovery signifies the first report of B. odocoilei causing human babesiosis.

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of the occurrence and diversity of Babesia spp. in European deer and advocate the need for an effective monitoring at wildlife-domestic animals-humans interface and the implementation of management plans to reduce the risk of babesia infection for both humans and domestic animals.

Journal ArticleDOI
TL;DR: In this article, the aetiology and epidemiology of vector borne apicomplexan Babesia and Hepatozoon and kinetoplastid Leishmania infantum infections in wildlife have not been explored in wide areas of southern Spain.
Abstract: The aetiology and epidemiology of vector borne apicomplexan Babesia and Hepatozoon and kinetoplastid Leishmania infantum infections in wildlife have not been explored in wide areas of southern Spain. We investigated these infections in 151 wild carnivores, including foxes, badgers, beech martens, hedgehogs, wild cats, Egyptian mongooses, otters, genets and racoons. Overall, Hepatozoon, Babesia and L. infantum infections were detected in 68%, 48% and 23% of the wild animals surveyed, respectively. L. infantum-infected wildlife were more likely to be also infected with the apicomplexan Hepatozoon and Babesia spp. compared to the non-infected counterparts (p < .05). We report for the first time Hepatozoon martis in badgers and wild cats and H. canis in beech martens, and a Babesia sp. in wild cats from Spain. Our results also indicate the widespread distribution of H. canis in foxes (91%) and beech martens (13%), H. martis in beech martens (81%), wild cats (20%) and badgers (13%), H. felis in wild cats (60%), B. vulpes in foxes (64%), Babesia sp. type A closely related to B. vulpes, in badgers (58%) and Babesia sp. in wild cats (20%). Moreover, L. infantum infection was found in foxes (29%), beech martens (13%), badgers (8%) and 1/3 Egyptian mongooses. We also detected Cytauxzoon sp. in a wild cat and the first Sarcocystis sp. in a genet. This study provided evidence of increased risk of L. infantum infection in wildlife animals co-infected with Babesia spp. or Hepatozoon spp. and indicated that these infections are widespread in wild carnivores from Spanish Mediterranean ecosystems.

Journal ArticleDOI
TL;DR: In this article, the authors highlight the newest findings in this field, based on a bibliographic compilation of research studies recently carried out for the detection of the main Babesia species found in tick vectors affecting mammalian hosts, including the different tick stages such as adult ticks, larvae, nymphs and eggs.
Abstract: The causative agents of Babesiosis are intraerythrocytic protozoa of the genus Babesia. Babesia parasites are present around the world, affecting several mammals including humans, pets and livestock, hence its medical and veterinary relevance. Babesia spp. detection in its invertebrate host is a main point in understanding the biology of the parasite to acquire more knowledge on the host-Babesia-vector interactions, as increasing knowledge of the Babesia lifecycle and babesiosis epidemiology can help prevent babesiosis outbreaks in susceptible mammals. The aim of the present review is to highlight the newest findings in this field, based on a bibliographic compilation of research studies recently carried out for the detection of the main Babesia species found in tick vectors affecting mammalian hosts, including the different tick stages such as adult ticks, larvae, nymphs and eggs, as well as the detection method implemented: microscopic tools for parasite identification and molecular tools for parasite DNA detection by conventional PCR, nested-PCR, PCR-RFLP, PCR-RLB hybridization, real time-PCR, LAMP and RAP assays. Although molecular identification of Babesia parasites has been achieved in several tick species and tissue samples, it is still necessary to carry out transmission experiments through biological models to confirm the vectorial capacity of various tick species.

Journal ArticleDOI
TL;DR: In this article, the authors used morphological, molecular, and bioinformatic approaches to detect and characterize piroplasmid species from wild mammals and associated ticks sampled in Central-Western Brazil.
Abstract: The order Piroplasmida encompasses tick-borne pathogens of veterinary and medical importance positioned in two main families: Babesiidae and Theileriidae. Even though previous studies carried out in Brazil recorded the occurrence of piroplasmid species circulating in small mammals, 18S RNA gene sequences were only partially sequenced, preventing the assessment of their phylogenetic positioning. The current study aimed to detect and characterize, using morphological, molecular, and bioinformatic approaches, piroplasmids from wild mammals and associated ticks sampled in Central-Western Brazil. Out of 67 Didelphis albiventris sampled, 22 (16.4%) were positive for piroplasmids by PCR. In contrast, none of the 48 small rodents and 14 capybaras (Hydrochoerus hydrochaeris) was PCR-positive. Four Amblyomma dubitatum ticks-one from Rattus rattus, one from H. hydrochaeris, and two from D. albiventris-out of 114 Amblyomma spp. DNA samples were positive for piroplasmids by PCR. The phylogenetic inference performed using the near-complete 18S rRNA gene positioned the putative novel piroplasmid species detected in D. albiventris and associated A. dubitatum ticks near to Babesia sensu lato clade (Western group-cluster III) and distant from the Australian marsupial-associated piroplasms. Phylogenetic inferences based on two additional molecular markers, namely hsp-70 and cox-1, supported the near-complete 18S rRNA gene phylogenetic inference. Finally, the partial 18S rRNA gene sequences detected in ticks from rodents (R. rattus and H. hydrochaeris) showed 97.2-99.4% identity with the Piroplasmida previously detected in a capybara from Brazil, raising evidence that a still uncharacterized piroplasmid species has been identified in the capybara, the largest rodent species from South America.

Journal ArticleDOI
17 Sep 2021-Biologia
TL;DR: A review of tick and tick-borne pathogens in Slovakia can be found in this paper, with the most important milestones and recent findings, and outline future directions in the investigation of ticks as ectoparasites and vectors of zoonotic agents and in the study of tickborne diseases.
Abstract: In Slovakia, 22 tick species have been found to occur to date. Among them, Ixodes ricinus, Dermacentor reticulatus, D. marginatus and marginally Haemaphysalis concinna, H. inermis and H. punctata have been identified as the species of public health relevance. Ticks in Slovakia were found to harbour and transmit zoonotic and/or potentially zoonotic agents such as tick-borne encephalitis virus (TBEV), spirochaetes of the Borrelia burgdorferi sensu lato (s.l.) complex, the relapsing fever sprirochaete Borrelia miyamotoi, bacteria belonging to the orders Rickettsiales (Rickettsia spp., Anaplasma phagocytophilum, Neoehrlichia mikurensis), Legionellales (Coxiella burnetii), and Thiotrichales (Francisella tularensis), and Babesia spp. parasites (order Piroplasmida). Ixodes ricinus is the principal vector of the largest variety of microorganisms including viruses, bacteria and piroplasms. TBEV, B. burgdorferi s.l., rickettsiae of the spotted fever group, C. burnetii and F. tularensis have been found to cause serious diseases in humans, whereas B. miyamotoi, A. phagocytophilum, N. mikurensis, Babesia microti, and B. venatorum pose lower or potential risk to humans. Distribution of TBEV has a focal character. During the last few decades, new tick-borne encephalitis (TBE) foci and their spread to new areas have been registered and TBE incidence rates have increased. Moreover, Slovakia reports the highest rates of alimentary TBE infections among the European countries. Lyme borreliosis (LB) spirochaetes are spread throughout the distribution range of I. ricinus. Incidence rates of LB have shown a slightly increasing trend since 2010. Only a few sporadic cases of human rickettsiosis, anaplasmosis and babesiosis have been confirmed thus far in Slovakia. The latest large outbreaks of Q fever and tularaemia were recorded in 1993 and 1967, respectively. Since then, a few human cases of Q fever have been reported almost each year. Changes in the epidemiological characteristics and clinical forms of tularaemia have been observed during the last few decades. Global changes and development of modern molecular tools led to the discovery and identification of emerging or new tick-borne microorganisms and symbionts with unknown zoonotic potential. In this review, we provide a historical overview of research on ticks and tick-borne pathogens in Slovakia with the most important milestones and recent findings, and outline future directions in the investigation of ticks as ectoparasites and vectors of zoonotic agents and in the study of tick-borne diseases.

Journal ArticleDOI
TL;DR: This study is the first to provide the prevalences of the tick-borne pathogens for Chernivtsi, Khmelnytskyi, and Vinnytsia, and theFirst to detect Neorickettsia mikurensis in ixodid ticks from Ukraine.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the distribution, richness and epidemiological importance of soft ticks of the genus Argas from bird nests and their associated microorganisms, and found that the re-use of nests between and within years by different bird species appears to be ideal for the transmission of tick-borne microorganisms in cavity-nesting birds of semiarid areas.
Abstract: The knowledge of the distribution, richness and epidemiological importance of soft ticks of the genus Argas is incomplete. In Spain, five Argas species have been recorded, including three ornitophilic nidicolous ticks, but their associated microorganisms remain unknown. This study aimed to investigate ticks from bird nests and their microorganisms. Ticks were collected extensively from natural cavities and nest-boxes used by European rollers (Coracias garrulus) and little owls (Athene noctua) in Southeastern and Central Spain. Ticks were morphologically and genetically identified and corresponding DNA/RNA tick extracts were analyzed [individually (n = 150) or pooled (n = 43)] using specific PCR assays for bacteria (Anaplasmataceae, Bartonella, Borrelia, Coxiella/Rickettsiella, and Rickettsia spp.), viruses (Flaviviruses, Orthonairoviruses, and Phenuiviruses), and protozoa (Babesia/Theileria spp.). Six Argas genotypes were identified, of which only those of Argas reflexus (n = 8) were identified to the species level. Two other genotypes were closely related to each other and to Argas vulgaris (n = 83) and Argas polonicus (n = 33), respectively. These two species have not been previously reported from Western Europe. Two additional genotypes (n = 4) clustered with Argas persicus, previously reported in Spain. The remaining genotype (n = 22) showed low sequence identity with any Argas species, being most similar to the African Argas africolumbae. The microbiological screening revealed infection with a rickettsial strain belonging to Rickettsia fournieri and Candidatus Rickettsia vini group in 74.7% of ticks, mainly comprising ticks genetically related to A. vulgaris and A. polonicus. Other tick endosymbionts belonging to Coxiella, Francisella and Rickettsiella species were detected in ten, one and one tick pools, respectively. In addition, one Babesia genotype, closely related to avian Babesia species, was found in one tick pool. Lastly, Anaplasmataceae, Bartonella, Borrelia, and viruses were not detected. In conclusion, five novel Argas genotypes and their associated microorganisms with unproven pathogenicity are reported for Spain. The re-use of nests between and within years by different bird species appears to be ideal for the transmission of tick-borne microorganisms in cavity-nesting birds of semiarid areas. Further work should be performed to clarify the taxonomy and the potential role of soft Argas ticks and their microorganisms in the epidemiology of zoonoses.

Journal ArticleDOI
TL;DR: In this paper, the authors identified four tick species: Hyalomma lusitanicum (infestation prevalence: 33.6%), Dermacentor marginatus (26.9%), Rhipicephalus sanguineus sensu lato (18.9%) and R. bursa (0.2%).
Abstract: Tick-borne pathogens (TBPs) constitute an emerging public health concern favoured by multidimensional global changes. Amongst these, increase and spread of wild boar (Sus scrofa) populations are of special concern since this species can act as a reservoir of zoonotic pathogens and promote tick abundance. Thus, we aimed to make a first assessment of the risk by TBPs resulting from wild boar and ticks in the vicinity of a highly populated area. Between 2014 and 2016, we collected spleen samples and 2256 ticks from 261 wild boars (out of 438 inspected) in the metropolitan area of Barcelona (MAB; northeast Spain). We morphologically identified four tick species: Hyalomma lusitanicum (infestation prevalence: 33.6%), Dermacentor marginatus (26.9%), Rhipicephalus sanguineus sensu lato (18.9%) and R. bursa (0.2%). Ticks were pooled according to species and individual host. A total of 180 tick pools and 167 spleen samples were screened by real-time PCR and/or reverse line blot hybridization assay for Ehrlichia sp., Anaplasma sp., Babesia sp., Rickettsia sp., Borrelia burgdorferi sensu lato and Coxiella burnetii. Seventy-two out of the 180 tick pools were positive to Rickettsia spp. (minimum prevalence of 8.7%), including Rickettsia massiliae, R. slovaca and R. raoultii. We did not detect Rickettsia spp. in wild boar spleens nor other TBPs in ticks or wild boars. Since the ticks identified can bite humans, and the recorded spotted fever group (SFG) rickettsiae are zoonotic pathogens, there is a risk of SFG rickettsiae transmission for MAB inhabitants. Our results suggest a broader distribution of H. lusitanicum, competent vector for the Crimean-Congo haemorrhagic fever virus than previously known. Wild boar is not a Rickettsia spp. reservoir according to the spleen negative results. However, its abundance could favour tick life cycle and abundance, and its proximity to humans could promote the infection risk by Rickettsia spp.

Journal ArticleDOI
TL;DR: In this article, the authors used the tick-transmitted and culturable blood-borne pathogen Babesia duncani to evaluate the structure-activity relationship, safety, efficacy and mode of action of ELQs.
Abstract: An effective strategy to control blood-borne diseases and prevent outbreak recrudescence involves targeting conserved metabolic processes that are essential for pathogen viability. One such target for Plasmodium and Babesia, the infectious agents of malaria and babesiosis, respectively, is the mitochondrial cytochrome bc1 protein complex, which can be inhibited by endochin-like quinolones (ELQ) and atovaquone. We used the tick-transmitted and culturable blood-borne pathogen Babesia duncani to evaluate the structure-activity relationship, safety, efficacy and mode of action of ELQs. We identified a potent and highly selective ELQ prodrug (ELQ-502), which, alone, or in combination with atovaquone, eliminates B. microti and B. duncani infections in vitro and in mouse models of parasitemia and lethal infection. The strong efficacy at low dose, excellent safety, bioavailability and long half-life of this experimental therapy makes it an ideal clinical candidate for the treatment of human infections caused by Babesia and its closely related apicomplexan parasites.

Journal ArticleDOI
TL;DR: Babesia are tick-borne intra-erythrocytic parasites and the causative agents of babesiosis as mentioned in this paper, which are readily transfusion transmissible, gained recognition as a major risk to the blood supply, particularly in the United States.
Abstract: Babesia are tick-borne intra-erythrocytic parasites and the causative agents of babesiosis. Babesia, which are readily transfusion transmissible, gained recognition as a major risk to the blood supply, particularly in the United States (US), where Babesia microti is endemic. Many of those infected with Babesia remain asymptomatic and parasitemia may persist for months or even years following infection, such that seemingly healthy blood donors are unaware of their infection. By contrast, transfusion recipients are at high risk of severe babesiosis, accounting for the high morbidity and mortality (~19%) observed in transfusion-transmitted babesiosis (TTB). An increase in cases of tick-borne babesiosis and TTB prompted over a decade-long investment in blood donor surveillance, research, and assay development to quantify and contend with TTB. This culminated in the adoption of regional blood donor testing in the US. We describe the evolution of the response to TTB in the US and offer some insight into the risk of TTB in other countries. Not only has this response advanced blood safety, it has accelerated the development of novel serological and molecular assays that may be applied broadly, affording insight into the global epidemiology and immunopathogenesis of human babesiosis.


Journal ArticleDOI
TL;DR: In this article, the authors presented a whole-parasite Babesia vaccine and demonstrated that this vaccine significantly reduces peak parasitemia following challenge, and splenectomized mice are protected by vaccination.

Journal ArticleDOI
TL;DR: A review of Babesia-tick species interactions using molecular techniques in studies conducted in the last 20 years under field conditions is presented in this paper, where the authors identify the main vectors of important babesia species based on published research papers and molecular data derived from the GenBank database.
Abstract: Babesia spp. are protozoan parasites of great medical and veterinary importance, especially in the northern Hemisphere. Ticks are known vectors of Babesia spp., although some Babesia-tick interactions have not been fully elucidated. The present review was performed to investigate the specificity of Babesia-tick species interactions that have been identified using molecular techniques in studies conducted in the last 20 years under field conditions. We aimed to indicate the main vectors of important Babesia species based on published research papers (n = 129) and molecular data derived from the GenBank database. Repeated observations of certain Babesia species in specific species and genera of ticks in numerous independent studies, carried out in different areas and years, have been considered epidemiological evidence of established Babesia-tick interactions. The best studied species of ticks are Ixodes ricinus, Dermacentor reticulatus and Ixodes scapularis (103 reports, i.e. 80% of total reports). Eco-epidemiological studies have confirmed a specific relationship between Babesia microti and Ixodes ricinus, Ixodes persulcatus, and Ixodes scapularis and also between Babesia canis and D. reticulatus. Additionally, four Babesia species (and one genotype), which have different deer species as reservoir hosts, displayed specificity to the I. ricinus complex. Eco-epidemiological studies do not support interactions between a high number of Babesia spp. and I. ricinus or D. reticulatus. Interestingly, pioneering studies on other species and genera of ticks have revealed the existence of likely new Babesia species, which need more scientific attention. Finally, we discuss the detection of Babesia spp. in feeding ticks and critically evaluate the data on the role of the latter as vectors. Epidemiological data have confirmed the specificity of certain Babesia-tick vector interactions. The massive amount of data that has been thus far collected for the most common tick species needs to be complemented by more intensive studies on Babesia infections in underrepresented tick species.

Journal ArticleDOI
TL;DR: The results showed that 76.6 % of the examined animals were positive for at least one TBP, which is a significant milestone in the knowledge of occurrence of TBPs in sheep and goats in Malawi, which was prerequisite to proper diagnosis and control.

Journal ArticleDOI
TL;DR: In this paper, the authors used data-independent acquisition (DIA) quantitative proteomics to analyse changes in expression levels of global proteins and in phosphorylation modification in spleen tissue after Babesia microti infection in mice.
Abstract: Babesia is a protozoan parasite that infects red blood cells in some vertebrates. Some species of Babesia can induce zoonoses and cause considerable harm. As the largest immune organ in mammals, the spleen plays an important role in defending against Babesia infection. When infected with Babesia, the spleen is seriously injured but still actively initiates immunomodulatory responses. To explore the molecular mechanisms underlying the immune regulation and self-repair of the spleen in response to infection, this study used data-independent acquisition (DIA) quantitative proteomics to analyse changes in expression levels of global proteins and in phosphorylation modification in spleen tissue after Babesia microti infection in mice. After mice were infected with B. microti, their spleens were seriously damaged. Using bioinformatics methods to analyse dynamic changes in a large number of proteins, we found that the spleen still initiated immune responses to combat the infection, with immune-related proteins playing an important role, including cathepsin D (CTSD), interferon-induced protein 44 (IFI44), interleukin-2 enhancer-binding factor 2 (ILF2), interleukin enhancer-binding factor 3 (ILF3) and signal transducer and activator of transcription 5A (STAT5A). In addition, some proteins related to iron metabolism were also involved in the repair of the spleen after B. microti infection, including serotransferrin, lactoferrin, transferrin receptor protein 1 (TfR1) and glutamate-cysteine ligase (GCL). At the same time, the expression and phosphorylation of proteins related to the growth and development of the spleen also changed, including protein kinase C-δ (PKC-δ), mitogen-activated protein kinase (MAPK) 3/1, growth factor receptor-bound protein 2 (Grb2) and P21-activated kinase 2 (PAK2). Immune-related proteins, iron metabolism-related proteins and growth and development-related proteins play an important role in the regulation of spleen injury and maintenance of homeostasis. This study provides an important basis for the diagnosis and treatment of babesiosis.