scispace - formally typeset
Search or ask a question

Showing papers on "Chromosome 22 published in 2005"


Journal ArticleDOI
Mark T. Ross1, Darren Grafham1, Alison J. Coffey1, Steven E. Scherer2  +279 moreInstitutions (15)
17 Mar 2005-Nature
TL;DR: This analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome.
Abstract: The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence.

1,102 citations


Journal ArticleDOI
11 Mar 2005-Cell
TL;DR: It is demonstrated that this pair of Ty elements constitutes a preferred site for double-strand DNA breaks when DNA replication is compromised, analogous to the fragile sites observed in mammalian chromosomes.

316 citations


Journal ArticleDOI
LaDeana W. Hillier1, Tina Graves1, Robert S. Fulton1, Lucinda Fulton1, Kymberlie H. Pepin1, Patrick Minx1, Caryn Wagner-McPherson1, Dan Layman1, Kristine M. Wylie1, Mandeep Sekhon1, Michael C. Becker1, Ginger A. Fewell1, Kimberly D. Delehaunty1, Tracie L. Miner1, William E. Nash1, Colin Kremitzki1, Lachlan G. Oddy1, Hui Du1, Hui Sun1, Holland Bradshaw-Cordum1, Johar Ali1, Jason Carter1, Matt Cordes1, Anthony R. Harris1, Amber Isak1, Andrew Van Brunt1, Christine Nguyen1, Feiyu Du1, Laura Courtney1, Joelle Kalicki1, Philip Ozersky1, Scott Abbott1, Jon R. Armstrong1, Edward A. Belter1, Lauren Caruso1, Maria Cedroni1, Marc Cotton1, Teresa Davidson1, Anu Desai1, Glendoria Elliott1, Thomas Erb1, Catrina Fronick1, Tony Gaige1, William Haakenson1, Krista Haglund1, Andrea Holmes1, Richard Harkins1, Kyung Kim1, Scott Kruchowski1, Cindy Strong1, Neenu Grewal1, Ernest Goyea1, Shunfang Hou1, Andrew Levy1, Scott Martinka1, Kelly Mead1, Michael D. McLellan1, Rick Meyer1, Jennifer Randall-Maher1, Chad Tomlinson1, Sara Dauphin-Kohlberg1, Amy Kozlowicz-Reilly1, Neha Shah1, Sharhonda Swearengen-Shahid1, Jacqueline E. Snider1, Joseph T. Strong1, Johanna Thompson1, Martin Yoakum1, Shawn Leonard1, Charlene Pearman1, Lee Trani1, Maxim Radionenko1, Jason Waligorski1, Chunyan Wang1, Susan M. Rock1, Aye Mon Tin-Wollam1, Rachel Maupin1, Phil Latreille1, Michael C. Wendl1, Shiaw Pyng Yang1, Craig Pohl1, John W. Wallis1, John Spieth1, Tamberlyn Bieri1, Nicolas Berkowicz1, Joanne O. Nelson1, John R. Osborne1, Li Ding1, Rekha Meyer1, Aniko Sabo1, Yoram Shotland1, Prashant R. Sinha1, Patricia Wohldmann1, Lisa Cook1, Matthew T. Hickenbotham1, James M. Eldred1, Donald Williams1, Thomas A. Jones1, Xinwei She2, Francesca D. Ciccarelli, Elisa Izaurralde, James Taylor3, Jeremy Schmutz4, Richard M. Myers4, David R. Cox4, Xiaoqiu Huang5, John Douglas Mcpherson1, John Douglas Mcpherson6, Elaine R. Mardis1, Sandra W. Clifton1, Wesley C. Warren1, Asif T. Chinwalla1, Sean R. Eddy1, Marco A. Marra1, Marco A. Marra7, Ivan Ovcharenko8, Terrence S. Furey9, Webb Miller3, Evan E. Eichler2, Peer Bork, Mikita Suyama, David Torrents, Robert H. Waterston1, Robert H. Waterston2, Richard K. Wilson1 
07 Apr 2005-Nature
TL;DR: Extensive analyses confirm the underlying construction of the sequence, and expand the understanding of the structure and evolution of mammalian chromosomes, including gene deserts, segmental duplications and highly variant regions.
Abstract: Human chromosome 2 is unique to the human lineage in being the product of a head-to-head fusion of two intermediate-sized ancestral chromosomes. Chromosome 4 has received attention primarily related to the search for the Huntington's disease gene, but also for genes associated with Wolf-Hirschhorn syndrome, polycystic kidney disease and a form of muscular dystrophy. Here we present approximately 237 million base pairs of sequence for chromosome 2, and 186 million base pairs for chromosome 4, representing more than 99.6% of their euchromatic sequences. Our initial analyses have identified 1,346 protein-coding genes and 1,239 pseudogenes on chromosome 2, and 796 protein-coding genes and 778 pseudogenes on chromosome 4. Extensive analyses confirm the underlying construction of the sequence, and expand our understanding of the structure and evolution of mammalian chromosomes, including gene deserts, segmental duplications and highly variant regions.

107 citations


Journal ArticleDOI
TL;DR: This study identifies a phenotypically normal r(22) individual whose ring chromosome does not disrupt SHANK3, and proposes it to be a candidate gene for autism or abnormal brain development.
Abstract: We performed a phenotype study of 35 individuals (19 males, 16 females) with ring chromosome 22 or r(22) with a mean age of 10 years. In common with other studies, a phenotype of moderate-to-profound learning difficulties and delay or absence of speech affected all individuals with the exception of the case with the smallest deletion. Autistic traits were significantly associated with r(22), as shown by an autism screening questionnaire. Mild and variable dysmorphic features, predominantly craniofacial and distal limb, were observed. Internal organ involvement was uncommon. Even though ring chromosomes are reportedly associated with growth abnormalities, only 2 out of 24 individuals showed evidence of growth failure, while 2 showed accelerated growth. Chromosome 22 long arm deletions, as determined by hemizygosity for informative microsatellite markers, varied from <67 kb to 10.2 Mb in size (or <0.15 to 21% of total chromosome length), with no significant differences in the parental origin of the ring chromosome. Few phenotypic features correlated with deletion size suggesting a critical gene, or genes, of major effect lies close to the telomere. Loss of the SHANK3/PROSAP2 gene has been proposed to be responsible for the main neurological developmental deficits observed in 22q13 monosomies. This study supports this candidate gene by identifying a phenotypically normal r(22) individual whose ring chromosome does not disrupt SHANK3. All other r(22) individuals were hemizygous for SHANK3, and we propose it to be a candidate gene for autism or abnormal brain development.

96 citations


Journal ArticleDOI
TL;DR: The paucity of reported cases of 22q11.2 microduplication likely reflects a combination of phenotypic diversity and the difficulty of diagnosis by FISH analysis on metaphase spreads, and illustrates the importance of scanning interphase nuclei when performing FISHAnalysis for any of the genomic disorders.
Abstract: Twenty-one patients, including our two cases, with variable clinical phenotype, ranging from mild learning disability to severe congenital malformations or overlapping features with DiGeorge/velocardiofacial syndromes (DG/VCFS), have been shown to have a chromosome duplication 22q11 of the region that is deleted in patients with DG/VCFS. The reported cases have been identified primarily by interphase FISH and could have escaped identification and been missed by routine cytogenetic analysis. Here we report on two inherited cases, referred to us, to rule out 22q11 microdeletion diagnosis of VCFS. The first patient was a 2-month-old girl, who presented with cleft palate, minor dysmorphic features including short palpebral fissures, widely spaced eyes, long fingers, and hearing loss. Her affected mother had mild mental retardation and learning disabilities. The second patient was a 7½-year-old boy with velopharyngeal insufficiency and mild developmental delay. He had a left preauricular tag, bifida uvula, bilateral fifth finger clinodactyly, and bilateral cryptorchidism. His facial features appeared mildly dysmorphic with hypertelorism, large nose, and micro/retrognathia. The affected father had mild mental retardation and had similar facial features. FISH analysis of interphase cells showed three TUPLE1-probe signals with two chromosome-specific identification probes in each cell. FISH analysis did not show the duplication on the initial testing of metaphase chromosomes. On review, band q11.2 was brighter on one chromosome 22 in some metaphase spreads. The paucity of reported cases of 22q11.2 microduplication likely reflects a combination of phenotypic diversity and the difficulty of diagnosis by FISH analysis on metaphase spreads. These findings illustrate the importance of scanning interphase nuclei when performing FISH analysis for any of the genomic disorders. © 2005 Wiley-Liss, Inc.

96 citations


Journal ArticleDOI
TL;DR: The authors introduce several possible gene candidates, including BAM22, LARGE, INI1, and MN1 genes, and describe the genetic similarities and differences among sporadic, NF2-associated, pediatric, and radiation-induced meningiomas.
Abstract: In this article the authors provide a brief description of the current understanding of meningioma genetics. Chromosome 22 abnormalities, especially in the Neurofibromatosis Type 2 (NF2) gene, have been associated with meningioma development. Loss of heterozygosity of chromosome 22 occurs in approximately 60% of meningiomas; however, loss of NF2 gene function occurs in only one third of these lesions. This discrepancy supports the theory that a second tumor suppressor gene exists on chromosome 22, and the authors introduce several possible gene candidates, including BAM22, LARGE, INI1, and MN1 genes. Deletions of 1p have also been shown to correlate with meningioma progression. The genetic similarities and differences among sporadic, NF2-associated, pediatric, and radiation-induced meningiomas are discussed, with the observation that the nonsporadic meningiomas have a higher incidence of multiple chromosomal abnormalities at presentation. Ultimately, a better understanding of the molecular pathways of meningioma tumorigenesis will lead to new, successful treatments.

93 citations


Journal ArticleDOI
TL;DR: ESFT contains a unique protein generated by a tumor-specific translocation that has great potential as a molecular target for therapy, however, therapeutic applications directed towards eliminating or inactivating EWS-FLI1 have not reached the clinic.
Abstract: Ewing's sarcoma family of tumors (ESFT) affect patients between the ages of 3 and 40 years, with most cases occurring in the second decade of life. ESFTs are characterized by a translocation that occurs in 95% of tumors. This translocation joins the Ewing's sarcoma gene (EWS) located on chromosome 22 to an ets family gene; either friend leukemia insertion (FLI)1 located on chromosome 11, t(11;22), or ets-related gene (ERG) located on chromosome 21, t(21;22). The EWS-FLI1 fusion transcript encodes a 68 kDa protein with two primary domains. The EWS domain is a potent transcriptional activator, while the FLI1 domain contains a highly conserved ets DNA binding domain. ESFT presents a clinical challenge, especially in patients with metastatic disease in which dose-intensifying chemotherapy with bone-marrow transplantation does not improve survival. EWS-FLI1 is only present in ESFT cells and does not exist in any normal cell of the body. Experiments using ESFT cell lines or animal xenograft models have proven that EWS-FLI1 is required for tumor survival. Therefore, ESFT contains a unique protein generated by a tumor-specific translocation that has great potential as a molecular target for therapy. However, therapeutic applications directed towards eliminating or inactivating EWS-FLI1 have not reached the clinic. EWS-FLI1 has been a very difficult molecule to directly analyze in vitro due to poor solubility. Recent advances in generating recombinant EWS-FLI1 and novel data on the cellular functions of EWS-FLI1 should enhance progress towards understanding and application.

82 citations


Journal ArticleDOI
01 Jun 2005-Genetics
TL;DR: Two-color BAC-FISH karyotyping overcomes the problem of chromosome recognition in organisms where conventional banding techniques are not available and facilitates physical mapping of any other sequence.
Abstract: Lepidopteran species have a relatively high number of small holocentric chromosomes (Bombyx mori, 2n = 56). Chromosome identification has long been hampered in this group by the high number and by the absence of suitable markers like centromere position and chromosome bands. In this study, we carried out fluorescence in situ hybridization (FISH) on meiotic chromosome complements using genetically mapped B. mori bacterial artificial chromosomes (BACs) as probes. The combination of two to four either green or red fluorescence-labeled probes per chromosome allowed us to recognize unequivocally each of the 28 bivalents of the B. mori karyotype by its labeling pattern. Each chromosome was assigned one of the already established genetic linkage groups and the correct orientation in the chromosome was defined. This facilitates physical mapping of any other sequence and bears relevance for the ongoing B. mori genome projects. Two-color BAC-FISH karyotyping overcomes the problem of chromosome recognition in organisms where conventional banding techniques are not available.

82 citations


Journal ArticleDOI
TL;DR: The results suggest that a 957 kb locus, located at 22q12.3, may contain the putative TSG, TIMP-3, that appears to be relevant to progression to secondary glioblastoma and subsequently to the prognosis of grade II diffuse astrocytoma.

81 citations


Journal ArticleDOI
TL;DR: Velo-cardio-facial syndrome (VCFS) is the most common contiguous gene deletion syndrome in humans, caused by a microdeletion from chromosome 22 at the q11.2 locus.

66 citations


Journal ArticleDOI
TL;DR: This study finds no association between Y‐chromosome loci hosting genes other than SRY, and the phenotypic sex, the diagnosis and the phenotype of the patients, and shows a possible association of these deletions with Y‐ chromosome instability.
Abstract: A mosaic karyotype consisting of a 45,X cell line and a second cell line containing a normal or an abnormal Y chromosome is relatively common and is associated with a wide spectrum of clinical phenotypes The aim of this study was to investigate patients with such a mosaic karyotype for Y chromosome material loss and then study the possible association of the absence of these regions with the phenotype, diagnosis, and Y-chromosome instability We studied 17 clinically well-characterized mosaic patients whose karyotype consisted of a 45,X cell line and a second cell line containing a normal or an abnormal Y chromosome The presence of the Y chromosome centromere was verified by fluorescence in situ hybridization (FISH) and was then characterized by 44 Y-chromosome specific-sequence tagged site (STS) markers This study identifies a high frequency of Yq chromosome deletions (47%) The deletions extend from interval 5 to 7 sharing a common deleted interval (6F), which overlaps with the azoospermia factor region (AZF) region This study finds no association between Y-chromosome loci hosting genes other than SRY, and the phenotypic sex, the diagnosis, and the phenotype of the patients Furthermore, this study shows a possible association of these deletions with Y-chromosome instability

Journal ArticleDOI
TL;DR: This study demonstrated the advantages of combining array comparative genomic hybridization and microsatellite analysis in elucidating complex genomic rearrangements in primary human tumor tissue.
Abstract: Many studies have reported chromosome 22 as being abnormal in astrocytic tumors. In an attempt to map precisely the abnormal region or regions that potentially harbor tumor-suppressor genes or oncogenes, we constructed a chromosome 22 tile path array covering 82% of 22q with the use of 441 chromosome 22 clones. A 10-Mb whole-genome array consisting of 270 clones from all autosomes was included in the array. A total of 126 astrocytic tumors—5 diffuse astrocytomas (A), 29 anaplastic astrocytomas (AA), and 92 glioblastomas (GB)—were examined for chromosome 22 alterations both by microsatellite analysis (using 28 markers to identify allelic imbalance) and with the tile path array. The results showed that chromosome 22 alterations in astrocytic tumors could be complex. A number of tumors had a combination of deletions with and without reduplication of the retained chromosome, as well as copy number gains and amplifications. In two glioblastomas, overlapping homozygous deletions were identified that involved three genes (DEPDC5/KIAA0645, YWHAH, C22ORF24/HSN44A4A). The terminal region telomeric to the clone RP3-398C22 appeared to be the most frequently deleted region. The estimated incidence of any chromosome 22 alteration was 5% in A, 33% in AA, and 38% in GB. This study demonstrated the advantages of combining array comparative genomic hybridization and microsatellite analysis in elucidating complex genomic rearrangements in primary human tumor tissue. Supplementary material for this article can be found on the Genes, Chromosomes and Cancer website at http://www.interscience.wiley.com/jpages/1045-2257/suppmat/index.html. © 2005 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: This work demonstrates the first demonstration of a phenotype associated with the major repeat sequence (MRS), and shows that both natural and artificially induced differences in the size of the chromosome 5 MRS can affect chromosome segregation.
Abstract: The major repeat sequence (MRS) is found at least once on all but one chromosome in Candida albicans, but as yet it has no known relation to the phenotype. The MRS affects karyotypic variation by serving as a hot spot for chromosome translocation and by expanding and contracting internal repeats, thereby changing chromosome length. Thus, MRSs on different chromosomes and those on chromosome homologues can differ in size. We proposed that the MRS9s unique repeat structure and, more specifically, the size of the MRS could also affect karyotypic variation by altering the frequency of mitotic nondisjunction. Subsequent analysis shows that both natural and artificially induced differences in the size of the chromosome 5 MRS can affect chromosome segregation. Strains with chromosome 5 homologues that differ in the size of the naturally occurring MRSs show a preferential loss of the homologue with the larger MRS on sorbose, indicating that a larger MRS leads to a higher risk of mitotic nondisjunction for that homologue. While deletion of an MRS has no deleterious effect on the deletion chromosome under normal growth conditions and leads to no obvious phenotype, strains that have the MRS deleted from one chromosome 5 homologue preferentially lose the homologue with the MRS remaining. This effect on chromosome segregation is the first demonstration of a phenotype associated with the MRS.

Journal ArticleDOI
01 Jul 2005-Genetics
TL;DR: It is concluded that a part of the Y chromosome has been inverted, and the gradient in silent-site divergence suggests that this inversion took place after the recombination arrest in this region.
Abstract: Here we compare gene orders on the Silene latifolia sex chromosomes. On the basis of the deletion mapping results (11 markers and 23 independent Y chromosome deletion lines used), we conclude that a part of the Y chromosome (covering a region corresponding to at least 23.9 cM on the X chromosome) has been inverted. The gradient in silent-site divergence suggests that this inversion took place after the recombination arrest in this region. Because recombination arrest events followed by Y chromosome rearrangements also have been found in the human Y chromosome, this process seems to be a general evolutionary pathway.

Journal ArticleDOI
TL;DR: In this article, 14 minichromosomes derived from the B chromosome of maize were described and their gross structure was determined using fluorescence in situ hybridization (FISH) on root tip chromosome.
Abstract: Fourteen minichromosomes derived from the B chromosome of maize are described. The centromeric region of the B chromosome contains a specific repetitive DNA element called the B repeat. This sequence was used to determine the transmission frequency of the different types of minichromosomes over several generations via Southern blot analysis at each generation. In general, the minichromosomes have transmission rates below the theoretical 50% frequency of a univalent chromosome. The gross structure of each minichromosome was determined using fluorescence in situ hybridization (FISH) on root tip chromosome spreads. The presence of the B centromeric repeat and of the adjacent heterochromatic knob sequences was determined for each minichromosome. In two cases, the amount of the centromeric knob repeat is increased relative to the progenitor chromosome. Other isolates have reduced or undetectable levels of the knob sequence. Potential uses of the minichromosomes are discussed.

Journal ArticleDOI
01 Jul 2005-AIDS
TL;DR: The data indicated the presence of a new genetic factor associated with the HIV-1-exposed but uninfected status, which was found between chromosome 22q12-13 genotypes and a putative dominant locus conferring anti-HIV-1 immune responses in the exposed but unin infected individuals.
Abstract: Objective: Despite multiple and repeated exposures to HIV-1, some individuals possess no detectable HIV genome and show T-cell memory responses to the viral antigens. HIV-1-reactive mucosal IgA detected in such uninfected individuals suggests their possible immune resistance against HIV. We tested if the above HIV-1-exposed but uninfected status was associated with genetic markers other than a homozygous deletion of the CCR5 gene. Methods: Based on our mapping in chromosome 15 of a gene controlling the production of neutralizing antibodies in a mouse retrovirus infection, we genotyped 42 HIV-1-exposed but uninfected Italians at polymorphic loci in the syntenic segment of human chromosome 22, and compared them with 49 HIV-1-infected and 47 uninfected healthy control individuals by a closed testing procedure. Results: A significant association was found between chromosome 22q12-13 genotypes and a putative dominant locus conferring anti-HIV-1 immune responses in the exposed but uninfected individuals. Distributions of linkage disequilibrium across chromosome 22 also differed between the exposed but uninfected and two other phenotypic groups. Conclusions: The data indicated the presence of a new genetic factor associated with the HIV-1-exposed but uninfected status.

Journal ArticleDOI
TL;DR: The characterization of chromosomes by FISH and staining with propidium iodide indicated that 18S/28S ribosomal gene repeats are present in the short arms of three pairs of chromosomes and that the short Arms of these pairs show remarkable size polymorphism.
Abstract: The compact genome of the ascidian Ciona intestinalis has been sequenced. Chromosome karyotype and mapping of the genome sequence information on each of the 14 pairs of chromosomes are essential for genome-wide studies of gene expression and function in this basal chordate. Although the small chromosome size (most pairs measuring less than 2 μm) complicates accurate chromosome pairing based on morphology alone, the present results suggest that 20 chromosomes are metacentric and 8 are submetacentric or subtelocentric, and two pairs of large chromosomes (#1 and #2) were defined. The characterization of chromosomes by FISH and staining with propidium iodide indicated that 18S/28S ribosomal gene repeats are present in the short arms of three pairs of chromosomes and that the short arms of these pairs show remarkable size polymorphism. In addition, each chromosome was characterized molecular cytogenetically by mapping representative BAC clones with FISH. The present study is therefore a first step in ...

Journal ArticleDOI
TL;DR: This is the largest FISH study of prenatally ascertained SMCs and the first study with detailed data on the prevalence, and indicates a higher frequency of SMCs than generally assumed.
Abstract: Fluorescence in situ hybridization (FISH) analyses were performed on supernumerary marker chromosomes (SMCs) detected in 43 273 prenatal diagnoses over a period of 11 years, 1993–2003. A total of 42 pregnancies with SMC were identified, indicating a prevalence of one in 1032. A total of 15 SMCs were endowed with detectable euchromatin (prevalence, 1/2884), including six SMCs containing the cat eye critical region (CECR) on chromosome 22q11.21 (1/7212). De novo SMCs were found in 29 pregnancies (1/1492), including 14 euchromatic SMCs (48.2%). Follow-up studies were available for 24 cases. Nine pregnancies (37.5%) were terminated; two children (8.3%) were born with Pallister–Killian syndrome and cat eye syndrome (CES), respectively; 13 children (54.1%) showed apparently normal development. Familial SMCs were identified in 13 pregnancies (1/3328) from 11 unrelated women. They were all acrocentric. In all, 10 were heterochromatic and one was an extra der(22)t(11;22) chromosome. A total of 12 cases were available for follow-up. One pregnancy was terminated due to anhydramnios, spina bifida, and cystic-dysplastic kidneys; one child suffered from a der(22) syndrome; 10 children (83.3%) appeared unaffected. Studies for uniparental disomy were performed on seven pregnancies and revealed a case of maternal heterodisomy for chromosome 22. So far this is the largest FISH study of prenatally ascertained SMCs and the first study with detailed data on the prevalence. Findings illustrate the spectrum and clinical outcomes of prenatally diagnosed SMCs, and indicate a higher frequency of SMCs than generally assumed.


Journal ArticleDOI
TL;DR: This review will focus on recent studies that reveal the autosome‐acquired genes on the Y chromosome of both Drosophila and humans and the evolution of the acquired and amplified genes onThe Y chromosome is also discussed.
Abstract: The special properties of the Y chromosome stem form the fact that it is a non-recombining degenerate derivative of the X chromosome. The absence of homologous recombination between the X and the Y chromosome leads to gradual degeneration of various Y chromosome genes on an evolutionary timescale. The absence of recombination, however, also favors the accumulation of transposable elements on the Y chromosome during its evolution, as seen with both Drosophila and mammalian Y chromosomes. Alongside these processes, the acquisition and amplification of autosomal male benefit genes occur. This review will focus on recent studies that reveal the autosome-acquired genes on the Y chromosome of both Drosophila and humans. The evolution of the acquired and amplified genes on the Y chromosome is also discussed. Molecular and comparative analyses of Y-linked repeats in the Drosophila melanogaster genome demonstrate that there was a period of their degeneration followed by a period of their integration into RNAi silencing, which was beneficial for male fertility. Finally, the function of non-coding RNA produced by amplified Y chromosome genetic elements will be discussed. BioEssays 27:1256–1262, 2005. © 2005 Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: A new case with a de novo unbalanced translocation t(Y;22) and the genotype-phenotype correlation is described, which shows the importance of documenting (Y;autosome) translocations with molecular and testicular tissue analyses.
Abstract: (Y;autosome) translocations have been reported in association with male infertility. Different mechanisms have been suggested to explain the male infertility, such as deletion of the azoospermic factor (AZF) on the long arm of the Y chromosome, or meiosis impairment. We describe a new case with a de novo unbalanced translocation t(Y;22) and discuss the genotype-phenotype correlation. A 36 year old male with azoospermia was found to have a mosaic 45,X/46,X, + mar karyotype. Fluorescence in situ hybridization (FISH) showed the presence of a derivative Y chromosome containing the short arm, the centromere and a small proximal part of the long-arm euchromatin of the Y chromosome and the long arm of chromosome 22. The unstable small marker chromosome included the short arm and the centromere of chromosome 22. This unbalanced translocation t(Y;22)(q11.2;q11.1) generated the loss of the long arm of the Y chromosome involving a large part of AZFb, AZFc and Yq heterochromatin regions. Testicular tissue analyses showed sperm in the wet preparation. Our case shows the importance of documenting (Y;autosome) translocations with molecular and testicular tissue analyses.

Journal ArticleDOI
TL;DR: The results demonstrated the power of array‐CGH to determine DNA copy number alterations in the context of germ‐line‐ and tumor‐specific aberrations and identified two distinct loci affected by regional gains.
Abstract: Gliomas are common and frequently malignant tumors of the central nervous system. Recurrent allelic losses of chromosome 22 have been reported in gliomas, indicating tumor-suppressor genes at this location. However, the target genes are still unknown. We applied a high resolution tiling-path chromosome 22 array to a series of 50 glioblastoma samples, with the aim of investigating the underlying abnormalities in both constitutional and tumor-derived DNA. We detected hemizygous deletions in 28% of the tumors (14 of 50), with monosomy 22 (10 of 50) being the predominant pattern. The distribution of overlapping hemizygous deletions delineated two putative tumor-suppressor loci (11.1 and 3.08 Mb in size) across 22q. Most strikingly, we identified two distinct loci affected by regional gains. Both alterations were of germ-line origin and were unique to samples from patients affected with tumors. Analysis of these two amplified regions revealed the presence of two interesting candidate genes: TOP3B and TAFA5. The TOP3B gene encodes a protein that seems to function in the unlinking of parental strands at the final stage of DNA replication and/or in the dissociation of structures in mitotic cells that could lead to recombination. The TAFA5 gene belongs to a novel family of proteins with similarity to chemokines and brain-specific expression. The role of the identified candidate loci should be studied further. Our results demonstrated the power of array-CGH to determine DNA copy number alterations in the context of germ-line- and tumor-specific aberrations.

Journal ArticleDOI
TL;DR: The results indicate that the W chromosomes of the strains in Japan are almost identical in type, and the regions containing the W‐Samurai and W‐Mikan RAPD marker were deleted in the T(W;3)Ze and T(w;10)+w−2 chromosomes, respectively, due to reciprocal translocation between the W chromosome and the autosome.
Abstract: In the silkworm, Bombyx mori (female, ZW; male, ZZ), femaleness is determined by the presence of a single W chromosome, irrespective of the number of autosomes or Z chromosomes. The W chromosome is devoid of functional genes, except the putative female-determining gene (Fem). However, there are strains in which chromosomal fragments containing autosomal markers have been translocated on to W. In this study, we analysed the W chromosomal regions of the Zebra-W strain (T(W;3)Ze chromosome) and the Black-egg-W strain (T(W;10)+(w-2) chromosome) at the molecular level. Initially, we undertook a project to identify W-specific RAPD markers, in addition to the three already established W-specific RAPD markers (W-Kabuki, W-Samurai and W-Kamikaze). Following the screening of 3648 arbitrary 10-mer primers, we obtained nine W-specific RAPD marker sequences (W-Bonsai, W-Mikan, W-Musashi, W-Rikishi, W-Sakura, W-Sasuke, W-Yukemuri-L, W-Yukemuri-S and BMC1-Kabuki), almost all of which contained the border regions of retrotransposons, namely portions of nested retrotransposons. We confirmed the presence of eleven out of twelve W-specific RAPD markers in the normal W chromosomes of twenty-five silkworm strains maintained in Japan. These results indicate that the W chromosomes of the strains in Japan are almost identical in type. The Zebra-W strain (T(W;3)Ze chromosome) lacked the W-Samurai and W-Mikan RAPD markers and the Black-egg-W strain (T(W;10)+(w-2) chromosome) lacked the W-Mikan RAPD marker. These results strongly indicate that the regions containing the W-Samurai and W-Mikan RAPD markers or the W-Mikan RAPD marker were deleted in the T(W;3)Ze and T(W;10)+(w-2) chromosomes, respectively, due to reciprocal translocation between the W chromosome and the autosome. This deletion apparently does not affect the expression of Fem; therefore, this deleted region of the W chromosome does not contain the putative Fem gene.

Journal ArticleDOI
TL;DR: The results indicate that overall, the higher rate of chromosome abnormalities in the RBT group was solely due to unbalanced gametes and not to an interchromosomal effect or higher incidence of mosaicism, while some Robertsonian translocations may be more prone to produce mosaic and chaotic embryos.
Abstract: It has been suggested that translocations, and perhaps other chromosome rearrangements, disturb meiotic disjunction of chromosome pairs not involved in the translocation, resulting in non-disjunction in those chromosomes (interchromosomal effect) and predisposition to trisomy offspring. Other reports have suggested an increased risk of mosaicism and chaotic embryos in translocation carriers. This study was designed to determine if such interchromosomal effects are producing significantly more chromosome abnormalities than those expected from unbalanced gametes. For that purpose, two groups of PGD patients were compared, Robertsonian translocation carriers (RBT) and carriers of X-linked diseases (XLI), of similar age. Both groups were analysed by FISH with similar DNA probes. The results indicate that overall, the higher rate of chromosome abnormalities in the RBT group was solely due to unbalanced gametes and not to an interchromosomal effect or higher incidence of mosaicism. If unbalanced and normal were combined, this proportion was 53% in XLI and 59% in RBT. However, when specific RBT translocations were studied, only a slight increase in embryos with aneuploidy for chromosome 22 was found for the t(13;14) translocation carriers, while a higher rate of post-zygotic abnormalities was observed in the more rare RBT. In conclusion, the overall rate of non-translocation related abnormalities was not increased in the RBT group compared with the control group, but a slight interchromosomal effect may exist, as some Robertsonian translocations may be more prone to produce mosaic and chaotic embryos.

Journal ArticleDOI
TL;DR: In this article, a tiling-path chromosome 22 genomic array was used to identify two candidate regions of copy number variation, which were further characterized by a PCR-based array with higher resolution.
Abstract: Schwannomatosis is characterized by multiple peripheral and cranial nerve schwannomas that occur in the absence of bilateral 8th cranial nerve schwannomas. The latter is the main diagnostic criterion of neurofibromatosis type 2 (NF2), which is a related but distinct disorder. The genetic factors underlying the differences between schwannomatosis and NF2 are poorly understood, although available evidence implicates chromosome 22 as the primary location of the gene(s) of interest. To investigate this, we comprehensively profiled the DNA copy number in samples from sporadic and familial schwannomatosis, NF2, and a large cohort of normal controls. Using a tiling-path chromosome 22 genomic array, we identified two candidate regions of copy number variation, which were further characterized by a PCR-based array with higher resolution. The latter approach allows the detection of minute alterations in total genomic DNA, with as little as 1.5 kb per measurement point of nonredundant sequence on the array. In DNA derived from peripheral blood from a schwannomatosis patient and a sporadic schwannoma sample, we detected rearrangements of the immunoglobulin lambda (IGL) locus, which is unlikely to be due to a B-cell specific somatic recombination of IGL. Analysis of normal controls indicated that these IGL rearrangements were restricted to schwannomatosis/schwannoma samples. In the second candidate region spanning GSTT1 and CABIN1 genes, we observed a frequent copy number polymorphism at the GSTT1 locus. We further describe missense mutations in the CABIN1 gene that are specific to samples from schwannomatosis and NF2 and make this gene a plausible candidate for contributing to the pathogenesis of these disorders.

Journal ArticleDOI
TL;DR: A study of subtelomeric aberrations with the aim of providing more insights into the understanding of such rearrangements as neutral genomic polymorphisms found two new polymorphisms: a duplication or triplication of the subtelomersic region of the long arm of chromosome 4 and a trisomy of the short arm of chromosomes 6 owing to a transposition to chromosome 22.
Abstract: Submicroscopic chromosomal rearrangements affecting telomeres are important aetiological contributors to the development of mental retardation. Results from over 2,500 analysed patients with mental retardation demonstrated that about 5% have a subtelomeric aberration. However, some subtelomeric rearrangements have no phenotypic consequences. Due to the heterogeneity of such rearrangements and to the limited information about which monosomy or trisomy can be tolerated without phenotypic effect, conclusions about the association of a specific aberration and the phenotypical consequences are often hard to draw. We performed a study of subtelomeric aberrations with the aim to provide more insights into the understanding of such rearrangements as neutral genomic polymorphisms. We found two new polymorphisms: a duplication or triplication of the subtelomeric region of the long arm of chromosome 4 and a trisomy of the subtelomeric region of the short arm of chromosome 6 owing to a transposition to chromosome 22. These new data are presented and discussed in the context of the published literature.

Journal ArticleDOI
TL;DR: A child initially suspected of having 22q11 microdeletion syndrome, who in addition developed a fatal malignant rhabdoid tumor of the kidney is presented, revealing a complex de novo rearrangement of band q11 of the paternally derived chromosome 22.
Abstract: The 22q11.2 microdeletion syndrome is the most frequent microdeletion syndrome in humans, yet its genetic basis is complex and is still not fully understood. Most patients harbor a 3-Mb deletion (typically deleted region [TDR]), but occasionally patients with atypical deletions, some of which do not overlap with each other and/or the TDR, have been described. Microduplication of the TDR leads to a phenotype similar, albeit not identical, to the deletion of this region. Here we present a child initially suspected of having 22q11 microdeletion syndrome, who in addition developed a fatal malignant rhabdoid tumor of the kidney. Detailed cytogenetic and molecular analyses revealed a complex de novo rearrangement of band q11 of the paternally derived chromosome 22. This aberration exhibited two novel features. First, a microduplication of the 22q11 TDR was associated with an atypical 22q11 microdeletion immediately telomeric of the duplicated region. Second, this deletion was considerably larger than previously reported atypical 22q11 deletions, spanning 2.8 Mb and extending beyond the SMARCB1/SNF5/INI1 tumor suppressor gene, whose second allele harbored a somatic frameshift-causing sequence alteration in the patient's tumor. Two nonallelic homologous recombination events between low-copy repeats (LCRs) could explain the emergence of this novel and complex mutation associated with the phenotype of 22q11 microdeletion syndrome.

Journal ArticleDOI
TL;DR: A high‐resolution analysis of DNA copy number and gene expression of 22q in 18 ovarian carcinomas using a 22q‐specific genomic microarray indicated significant correlation between DNAcopy number aberrations and variation in mRNA expression.
Abstract: Previous low-resolution studies of chromosome 22 in ovarian carcinoma have suggested its involvement in the development of the disease. We report a high-resolution analysis of DNA copy number and gene expression of 22q in 18 ovarian carcinomas using a 22q-specific genomic microarray. We identified aberrations in 67% of the studied tumors, which displayed 3 distinct gene copy number profiles. The majority of the cases (11 of 18) demonstrated heterozygous terminal deletions of various sizes, the smallest of which was 3.5 Mb. The second profile, detected in 3 tumors, revealed the coexistence of heterozygous deletions and different patterns of low-copy-number gain that involved the proximal half of 22q. The latter finding has not been reported previously in ovarian carcinoma. One case displayed a continuous deletion encompassing the entire 22q, consistent with monosomy 22. Furthermore, we compared the results with the available data on these tumors by using cDNA microarrays to define the degree of correlation between abnormalities at the DNA level and variation in mRNA expression. By a comparison with the expression data, we were able to identify 21 deleted genes showing low mRNA levels and 12 amplified genes displaying elevated gene expression, several of which play roles in cell cycle control and the induction of apoptosis. Our results indicated significant correlation between DNA copy number aberrations and variation in mRNA expression. We also identified several regions and candidate genes on 22q that should be studied further to determine their role in the development of ovarian cancer.

Journal ArticleDOI
TL;DR: It is proposed that Sult4A merited more careful scrutiny as a candidate gene for schizophrenia susceptibility.
Abstract: Previous studies suggest a role for chromosome 22q13 in schizophrenia. This segment of chromosome 22 contains the sulfotransferase-4A1 (Sult4A1) gene, which encodes an enzyme thought to be involved in neurotransmitter metabolism in the central nervous system. To evaluate this candidate, we developed a microsatellite marker targeting a polymorphism in its 5' nontranslated region (D22s1749E). Using samples obtained from the National Institutes of Mental Health Schizophrenia Genetics Initiative, we evaluated 27 families having multiple siblings with schizophrenia and schizophrenia-spectrum disorders for transmission disequilibrium (TDT) of this marker along with three single nucleotide polymorphisms (SNPs) spanning a 37 kb segment containing the Sult4A1 gene. TDT for D22s1749E was significant (P < 0.05), with a tendency for the 213 nt allele to be preferentially transferred to affected children (P = 0.0079). Global chi-square values for haplotypes involving the SNPs (ss146366, ss146407, and ss146420) and D22s1749E, also showed significant TDT values (P = 0.0006-0.0016). Consequently, we proposed that Sult4A merited more careful scrutiny as a candidate gene for schizophrenia susceptibility.

Journal ArticleDOI
TL;DR: The ability of the integrase from the Streptomyces φC31 ‘phage to either delete or invert 1 Mb of DNA around the centromere of the human Y chromosome in chicken DT40 hybrid somatic cells suggested that neo-centromere formation occurs infrequently in vertebrate somatic Cells.
Abstract: We have investigated the ability of the integrase from the Streptomyces phiC31 'phage to either delete or invert 1 Mb of DNA around the centromere of the human Y chromosome in chicken DT40 hybrid somatic cells. Reciprocal and conservative site-specific recombination was observed in 54% of cells expressing the integrase. The sites failed to recombine in the remaining cells because the sites had been damaged. The sequences of the damaged sites indicated that the damage arose as a result of repair of recombination intermediates by host cell pathways. The liability of recombination intermediates to damage is consistent with what is known about the mechanism of serine recombinase reactions. The structures of the products of the chromosome rearrangements were consistent with the published sequence of the Y chromosome indicating that the assembly of the highly repeated region between the sites is accurate to a resolution of about 50 kb. Mini-chromosomes lacking a centromere were not recovered which also suggested that neo-centromere formation occurs infrequently in vertebrate somatic cells. No ectopic recombination was observed between a phiC31 integrase attB site and the chicken genome.