scispace - formally typeset
Search or ask a question

Showing papers on "Global warming published in 2008"


Journal ArticleDOI
13 Jun 2008-Science
TL;DR: Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.
Abstract: The world's forests influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. These complex and nonlinear forest-atmosphere interactions can dampen or amplify anthropogenic climate change. Tropical, temperate, and boreal reforestation and afforestation attenuate global warming through carbon sequestration. Biogeophysical feedbacks can enhance or diminish this negative climate forcing. Tropical forests mitigate warming through evaporative cooling, but the low albedo of boreal forests is a positive climate forcing. The evaporative effect of temperate forests is unclear. The net climate forcing from these and other processes is not known. Forests are under tremendous pressure from global change. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.

4,541 citations


Book
01 Jun 2008
TL;DR: The Intergovernmental Panel on Climate Change (IPCC) Technical Paper Climate Change and Water draws together and evaluates the information in IPCC Assessment and Special Reports concerning the impacts of climate change on hydrological processes and regimes, and on freshwater resources.
Abstract: The Intergovernmental Panel on Climate Change (IPCC) Technical Paper Climate Change and Water draws together and evaluates the information in IPCC Assessment and Special Reports concerning the impacts of climate change on hydrological processes and regimes, and on freshwater resources – their availability, quality, use and management. It takes into account current and projected regional key vulnerabilities, prospects for adaptation, and the relationships between climate change mitigation and water. Its objectives are:

3,108 citations


Journal ArticleDOI
TL;DR: The second most important contribution to anthropogenic climate warming, after carbon dioxide emissions, was made by black carbon emissions as mentioned in this paper, which is an efficient absorbing agent of solar irradiation that is preferentially emitted in the tropics and can form atmospheric brown clouds in mixture with other aerosols.
Abstract: Black carbon in soot is an efficient absorbing agent of solar irradiation that is preferentially emitted in the tropics and can form atmospheric brown clouds in mixture with other aerosols. These factors combine to make black carbon emissions the second most important contribution to anthropogenic climate warming, after carbon dioxide emissions.

3,060 citations


Journal ArticleDOI
TL;DR: The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature, so that warming may even enhance their fitness.
Abstract: The impact of anthropogenic climate change on terrestrial organisms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal tolerance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation, the greatest extinction risks from global warming may be in the tropics, where biological diversity is also greatest.

2,996 citations


Journal ArticleDOI
17 Jan 2008-Nature
TL;DR: Past episodes of greenhouse warming provide insight into the coupling of climate and the carbon cycle and thus may help to predict the consequences of unabated carbon emissions in the future.
Abstract: Past episodes of greenhouse warming provide insight into the coupling of climate and the carbon cycle and thus may help to predict the consequences of unabated carbon emissions in the future.

2,771 citations


Journal ArticleDOI
TL;DR: This article presented a review of climate change projections over the Mediterranean region based on the most recent and comprehensive ensembles of global and regional climate change simulations completed as part of international collaborative projects.

2,524 citations


Journal ArticleDOI
04 Apr 2008-Science
TL;DR: A link exists between global warming and the worldwide proliferation of harmful cyanobacterial blooms as discussed by the authors, and it has been shown that global warming can be linked with the proliferation of these blooms.
Abstract: A link exists between global warming and the worldwide proliferation of harmful cyanobacterial blooms.

2,180 citations


Journal ArticleDOI
27 Jun 2008-Science
TL;DR: This study shows that climate warming has resulted in a significant upward shift in species optimum elevation averaging 29 meters per decade, which is larger for species restricted to mountain habitats and for grassy species, which are characterized by faster population turnover.
Abstract: Spatial fingerprints of climate change on biotic communities are usually associated with changes in the distribution of species at their latitudinal or altitudinal extremes. By comparing the altitudinal distribution of 171 forest plant species between 1905 and 1985 and 1986 and 2005 along the entire elevation range (0 to 2600 meters above sea level) in west Europe, we show that climate warming has resulted in a significant upward shift in species optimum elevation averaging 29 meters per decade. The shift is larger for species restricted to mountain habitats and for grassy species, which are characterized by faster population turnover. Our study shows that climate change affects the spatial core of the distributional range of plant species, in addition to their distributional margins, as previously reported.

1,796 citations


Journal ArticleDOI
TL;DR: The authors assesses the degree of resilience of mangrove forests to large, infrequent disturbance (tsunamis) and their role in coastal protection, and to chronic disturbance events (climate change).
Abstract: This review assesses the degree of resilience of mangrove forests to large, infrequent disturbance (tsunamis) and their role in coastal protection, and to chronic disturbance events (climate change) and the future of mangroves in the face of global change. From a geological perspective, mangroves come and go at considerable speed with the current distribution of forests a legacy of the Holocene, having undergone almost chronic disturbance as a result of fluctuations in sea-level. Mangroves have demonstrated considerable resilience over timescales commensurate with shoreline evolution. This notion is supported by evidence that soil accretion rates in mangrove forests are currently keeping pace with mean sea-level rise. Further support for their resilience comes from patterns of recovery from natural disturbances (storms, hurricanes) which coupled with key life history traits, suggest pioneer-phase characteristics. Stand composition and forest structure are the result of a complex interplay of physiological tolerances and competitive interactions leading to a mosaic of interrupted or arrested succession sequences, in response to physical/chemical gradients and landform changes. The extent to which some or all of these factors come into play depends on the frequency, intensity, size, and duration of the disturbance. Mangroves may in certain circumstances offer limited protection from tsunamis; some models using realistic forest variables suggest significant reduction in tsunami wave flow pressure for forests at least 100 m in width. The magnitude of energy absorption strongly depends on tree density, stem and root diameter, shore slope, bathymetry, spectral characteristics of incident waves, and tidal stage upon entering the forest. The ultimate disturbance, climate change, may lead to a maximum global loss of 10–15% of mangrove forest, but must be considered of secondary importance compared with current average annual rates of 1–2% deforestation. A large reservoir of below-ground nutrients, rapid rates of nutrient flux and microbial decomposition, complex and highly efficient biotic controls, self-design and redundancy of keystone species, and numerous feedbacks, all contribute to mangrove resilience to various types of disturbance.

1,401 citations


Book
24 Jun 2008
TL;DR: Nordhaus et al. as mentioned in this paper integrated the entire spectrum of economic and scientific research to weigh the costs of reducing emissions against the benefits of reducing long-term damage from global warming.
Abstract: As scientific and observational evidence on global warming piles up every day, questions of economic policy in this central environmental topic have taken centre stage. But as author and prominent Yale economist William Nordhaus observes, the issues involved in understanding global warming and slowing its harmful effects are complex and cross disciplinary boundaries. Ecologists see global warming as a threat to ecosystems, utilities as a debit to their balance sheets, and farmers as a hazard to their livelihoods. In this important work, William Nordhaus integrates the entire spectrum of economic and scientific research to weigh the costs of reducing emissions against the benefits of reducing long-term damage from global warming. The book offers one of the most extensive analyses of the economic and environmental dynamics of greenhouse-gas emissions and climate change and provides the tools to evaluate alternative approaches to slowing global warming. The author emphasizes the need to establish effective mechanisms, such as carbon taxes, to harness markets and harmonize the efforts of different countries.

1,396 citations


Journal ArticleDOI
15 May 2008-Nature
TL;DR: It is concluded that anthropogenic climate change is having a significant impact on physical and biological systems globally and in some continents.
Abstract: Significant changes in physical and biological systems are occurring on all continents and in most oceans, with a concentration of available data in Europe and North America. Most of these changes are in the direction expected with warming temperature. Here we show that these changes in natural systems since at least 1970 are occurring in regions of observed temperature increases, and that these temperature increases at continental scales cannot be explained by natural climate variations alone. Given the conclusions from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report that most of the observed increase in global average temperatures since the mid-twentieth century is very likely to be due to the observed increase in anthropogenic greenhouse gas concentrations, and furthermore that it is likely that there has been significant anthropogenic warming over the past 50 years averaged over each continent except Antarctica, we conclude that anthropogenic climate change is having a significant impact on physical and biological systems globally and in some continents.

Journal ArticleDOI
17 Jan 2008-Nature
TL;DR: Recent evidence suggests that, on a global scale, terrestrial ecosystems will provide a positive feedback in a warming world, albeit of uncertain magnitude.
Abstract: Recent evidence suggests that, on a global scale, terrestrial ecosystems will provide a positive feedback in a warming world, albeit of uncertain magnitude.

Journal ArticleDOI
12 Sep 2008-Science
TL;DR: Observations reveal a distinct link between rainfall extremes and temperature, with heavy rain events increasing during warm periods and decreasing during cold periods, implying that projections of future changes in rainfall extremes in response to anthropogenic global warming may be underestimated.
Abstract: Climate models suggest that extreme precipitation events will become more common in an anthropogenically warmed climate. However, observational limitations have hindered a direct evaluation of model-projected changes in extreme precipitation. We used satellite observations and model simulations to examine the response of tropical precipitation events to naturally driven changes in surface temperature and atmospheric moisture content. These observations reveal a distinct link between rainfall extremes and temperature, with heavy rain events increasing during warm periods and decreasing during cold periods. Furthermore, the observed amplification of rainfall extremes is found to be larger than that predicted by models, implying that projections of future changes in rainfall extremes in response to anthropogenic global warming may be underestimated.

Journal ArticleDOI
02 May 2008-Science
TL;DR: These time series reveal vertical expansion of the intermediate-depth low-oxygen zones in the eastern tropical Atlantic and the equatorial Pacific during the past 50 years.
Abstract: Oxygen-poor waters occupy large volumes of the intermediate-depth eastern tropical oceans. Oxygen-poor conditions have far-reaching impacts on ecosystems because important mobile macroorganisms avoid or cannot survive in hypoxic zones. Climate models predict declines in oceanic dissolved oxygen produced by global warming. We constructed 50-year time series of dissolved-oxygen concentration for select tropical oceanic regions by augmenting a historical database with recent measurements. These time series reveal vertical expansion of the intermediate-depth low-oxygen zones in the eastern tropical Atlantic and the equatorial Pacific during the past 50 years. The oxygen decrease in the 300- to 700-m layer is 0.09 to 0.34 micromoles per kilogram per year. Reduced oxygen levels may have dramatic consequences for ecosystems and coastal economies.

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed changes in drought occurrence using soil moisture data for the SRES B1, A1B and A2 future climate scenarios relative to the PICNTRL pre-industrial control and 20C3M twen-tieth century simulations from eight AOGCMs that participated in the IPCC AR4.
Abstract: Recent and potential future increases in global temperatures are likely to be associated with impacts on the hydrologic cycle, including changes to precipitation and increases in extreme events such as droughts. We analyze changes in drought occurrence using soil moisture data for the SRES B1, A1B and A2 future climate scenarios relative to the PICNTRL pre-industrial control and 20C3M twen- tieth century simulations from eight AOGCMs that participated in the IPCC AR4. Comparison with observa- tion forced land surface model estimates indicates that the models do reasonably well at replicating our best estimates of twentieth century, large scale drought occurrence, although the frequency of long-term (more than 12-month duration) droughts are over-estimated. Under the future projections, the models show decreases in soil moisture globally for all scenarios with a corresponding doubling of the spatial extent of severe soil moisture deficits and fre- quency of short-term (4-6-month duration) droughts from the mid-twentieth century to the end of the twenty-first. Long-term droughts become three times more common. Regionally, the Mediterranean, west African, central Asian and central American regions show large increases most notably for long-term frequencies as do mid-latitude North American regions but with larger variation between sce- narios. In general, changes under the higher emission scenarios, A1B and A2 are the greatest, and despite fol- lowing a reduced emissions pathway relative to the present day, the B1 scenario shows smaller but still substantial increases in drought, globally and for most regions. Increases in drought are driven primarily by reductions in precipitation with increased evaporation from higher tem- peratures modulating the changes. In some regions, increases in precipitation are offset by increased evapora- tion. Although the predicted future changes in drought occurrence are essentially monotonic increasing globally and in many regions, they are generally not statistically different from contemporary climate (as estimated from the 1961-1990 period of the 20C3M simulations) or natural variability (as estimated from the PICNTRL simulations) for multiple decades, in contrast to primary climate vari- ables, such as global mean surface air temperature and precipitation. On the other hand, changes in annual and seasonal means of terrestrial hydrologic variables, such as evaporation and soil moisture, are essentially undetectable within the twenty-first century. Changes in the extremes of climate and their hydrological impacts may therefore be more detectable than changes in their means.

Journal ArticleDOI
TL;DR: A novel integrated framework to assess vulnerability and prioritize research and management action aims to improve the ability to respond to this emerging crisis.
Abstract: [Extract] Global climate change threatens global biodiversity, ecosystem function, and human well-being, with thousands of publications demonstrating impacts across a wide diversity of taxonomic groups, ecosystems, economics, and social structure. A review by Hughes [1] identified many of the ways that organisms may be affected by and/or respond to climate change. Since then, there has been a dramatic increase in the number of case studies attesting to ecological impacts [2], prompting several recent reviews on the subject (e.g., [3–6]). Several global meta-analyses confirm the pervasiveness of the global climate change "fingerprint" across continents, ecosystems, processes, and species [7–9]. Some studies have predicted increasingly severe future impacts with potentially high extinction rates in natural systems around the world [10,11]. Responding to this threat will require a concerted, multi-disciplinary, multi-scale, multi-taxon research effort that improves our predictive capacity to identify and prioritise vulnerable species in order to inform governments of the seriousness of the threat and to facilitate conservation adaptation and management [12,13]. If we are to minimise global biodiversity loss, we need significant decreases in global emissions to be combined with environmental management that is guided by sensible prioritisation of relative vulnerability. That is, we need to determine which species, habitats, and ecosystems will be most vulnerable, exactly what aspects of their ecological and evolutionary biology determine their vulnerability, and what we can do about managing this vulnerability and minimising the realised impacts. There is an emerging literature on specific traits that promote vulnerability under climate change (e.g., thermal tolerance [14]) as well as a broad literature on the traits that influence species' vulnerability generally (e.g., review by [15]). Less is known about the various mechanisms for either ecological or evolutionary adaptation to climate change, although it is increasingly recognised as a vital component of assessing vulnerability [16,17].

Journal ArticleDOI
TL;DR: This work presents a conceptual framework and empirical review of the interactive effects of climate change and invasive species in freshwater ecosystems and highlights the complex interactions between climatechange and invasivespecies that will influence how aquatic ecosystems and their biota will respond to novel environmental conditions.
Abstract: Different components of global environmental change are typically studied and managed independently, although there is a growing recognition that multiple drivers often interact in complex and nonadditive ways. We present a conceptual framework and empirical review of the interactive effects of climate change and invasive species in freshwater ecosystems. Climate change is expected to result in warmer water temperatures, shorter duration of ice cover, altered streamflow patterns, increased salinization, and increased demand for water storage and conveyance structures. These changes will alter the pathways by which non-native species enter aquatic systems by expanding fish-culture facilities and water gardens to new areas and by facilitating the spread of species during floods. Climate change will influence the likelihood of new species becoming established by eliminating cold temperatures or winter hypoxia that currently prevent survival and by increasing the construction of reservoirs that serve as hotspots for invasive species. Climate change will modify the ecological impacts of invasive species by enhancing their competitive and predatory effects on native species and by increasing the virulence of some diseases. As a result of climate change, new prevention and control strategies such as barrier construction or removal efforts may be needed to control invasive species that currently have only moderate effects or that are limited by seasonally unfavorable conditions. Although most researchers focus on how climate change will increase the number and severity of invasions, some invasive coldwater species may be unable to persist under the new climate conditions. Our findings highlight the complex interactions between climate change and invasive species that will influence how aquatic ecosystems and their biota will respond to novel environmental conditions.

Journal ArticleDOI
TL;DR: In this article, a conceptual framework based on past investigations and ecological theory is presented to predict the consequences of global warming on terrestrial ecosystems, and a broad range of terrestrial ecosystems that vary in their overall water balance is considered.
Abstract: Amplification of the hydrological cycle as a consequence of global warming is forecast to lead to more extreme intra-annual precipitation regimes characterized by larger rainfall events and longer intervals between events. We present a conceptual framework, based on past investigations and ecological theory, for predicting the consequences of this underappreciated aspect of climate change. We consider a broad range of terrestrial ecosystems that vary in their overall water balance. More extreme rainfall regimes are expected to increase the duration and severity of soil water stress in mesic ecosystems as intervals between rainfall events increase. In contrast, xeric ecosystems may exhibit the opposite response to extreme events. Larger but less frequent rainfall events may result in proportional reductions in evaporative losses in xeric systems, and thus may lead to greater soil water availability. Hydric (wetland) ecosystems are predicted to experience reduced periods of anoxia in response to pr...

Journal ArticleDOI
TL;DR: The North Pacific Gyre Oscillation (NPGO) as mentioned in this paper is the most widely used index of large-scale climate variability in the Northeast Pacific region and has been shown to be correlated with previously unexplained fluctuations of salinity, nutrients, chlorophyll, and zooplankton taxa.
Abstract: Decadal fluctuations in salinity, nutrients, chlorophyll, a variety of zooplankton taxa, and fish stocks in the Northeast Pacific are often poorly correlated with the most widely-used index of large-scale climate variability in the region - the Pacific Decadal Oscillation (PDO). We define a new pattern of climate change, the North Pacific Gyre Oscillation (NPGO) and show that its variability is significantly correlated with previously unexplained fluctuations of salinity, nutrients and chlorophyll. Fluctuations in the NPGO are driven by regional and basin-scale variations in wind-driven upwelling and horizontal advection - the fundamental processes controlling salinity and nutrient concentrations. Nutrient fluctuations drive concomitant changes in phytoplankton concentrations, and may force similar variability in higher trophic levels. The NPGO thus provides a strong indicator of fluctuations in the mechanisms driving planktonic ecosystem dynamics. The NPGO pattern extends beyond the North Pacific and is part of a global-scale mode of climate variability that is evident in global sea level trends and sea surface temperature. Therefore the amplification of the NPGO variance found in observations and in global warming simulations implies that the NPGO may play an increasingly important role in forcing global-scale decadal changes in marine ecosystems.

Journal ArticleDOI
16 May 2008-Science
TL;DR: Although ∼10% of the ocean's drawdown of atmospheric anthropogenic carbon dioxide may result from this atmospheric nitrogen fertilization, leading to a decrease in radiative forcing, up to about two-thirds of this amount may be offset by the increase in N2O emissions.
Abstract: Increasing quantities of atmospheric anthropogenic fixed nitrogen entering the open ocean could account for up to about a third of the ocean's external (nonrecycled) nitrogen supply and up to 3% of the annual new marine biological production, 0.3 petagram of carbon per year. This input could account for the production of up to 1.6 teragrams of nitrous oxide (N2O) per year. Although 10% of the ocean's drawdown of atmospheric anthropogenic carbon dioxide may result from this atmospheric nitrogen fertilization, leading to a decrease in radiative forcing, up to about two-thirds of this amount may be offset by the increase in N2O emissions. The effects of increasing atmospheric nitrogen deposition are expected to continue to grow in the future.

Journal ArticleDOI
TL;DR: In this article, the authors show that the current CO2 level can be reduced to at most 350 ppm by phasing out coal use except where CO2 is captured and adopting agricultural and forestry practices that sequester carbon.
Abstract: Paleoclimate data show that climate sensitivity is ~3 deg-C for doubled CO2, including only fast feedback processes. Equilibrium sensitivity, including slower surface albedo feedbacks, is ~6 deg-C for doubled CO2 for the range of climate states between glacial conditions and ice-free Antarctica. Decreasing CO2 was the main cause of a cooling trend that began 50 million years ago, large scale glaciation occurring when CO2 fell to 450 +/- 100 ppm, a level that will be exceeded within decades, barring prompt policy changes. If humanity wishes to preserve a planet similar to that on which civilization developed and to which life on Earth is adapted, paleoclimate evidence and ongoing climate change suggest that CO2 will need to be reduced from its current 385 ppm to at most 350 ppm. The largest uncertainty in the target arises from possible changes of non-CO2 forcings. An initial 350 ppm CO2 target may be achievable by phasing out coal use except where CO2 is captured and adopting agricultural and forestry practices that sequester carbon. If the present overshoot of this target CO2 is not brief, there is a possibility of seeding irreversible catastrophic effects.

Book
02 Dec 2008
TL;DR: The fact of global climate change is, famously, contested but, as the scientific evidence has accumulated, a broad consensus has emerged that warming of the earth is indeed happening and that this is anthropogenic as mentioned in this paper.
Abstract: The fact of global climate change is, famously, contested but, as the scientific evidence has accumulated, a broad consensus has emerged that warming of the earth is indeed happening and that this is anthropogenic. Now the main debate (we will ignore here the minority of naysayers) has moved from ‘whether’ (it is happening) to ‘what’ (to do about it); this debate is not going well, if the measure of success is practical actions, globally agreed (or even agreed on a nation-by-nation basis), to reduce the rate of emissions of greenhouse gases with the aim, ultimately, of reducing the actual amount of such gases in the atmosphere.

Journal ArticleDOI
TL;DR: To understand the potential negative and positive contributions of soil microbes to land–atmosphere carbon exchange and global warming requires explicit consideration of both direct and indirect impacts of climate change on microorganisms.
Abstract: There is considerable interest in understanding the biological mechanisms that regulate carbon exchanges between the land and atmosphere, and how these exchanges respond to climate change. An understanding of soil microbial ecology is central to our ability to assess terrestrial carbon cycle–climate feedbacks, but the complexity of the soil microbial community and the many ways that it can be affected by climate and other global changes hampers our ability to draw firm conclusions on this topic. In this paper, we argue that to understand the potential negative and positive contributions of soil microbes to land–atmosphere carbon exchange and global warming requires explicit consideration of both direct and indirect impacts of climate change on microorganisms. Moreover, we argue that this requires consideration of complex interactions and feedbacks that occur between microbes, plants and their physical environment in the context of climate change, and the influence of other global changes which have the capacity to amplify climate-driven effects on soil microbes. Overall, we emphasize the urgent need for greater understanding of how soil microbial ecology contributes to land–atmosphere carbon exchange in the context of climate change, and identify some challenges for the future. In particular, we highlight the need for a multifactor experimental approach to understand how soil microbes and their activities respond to climate change and consequences for carbon cycle feedbacks.

Journal ArticleDOI
18 Jul 2008-Science
TL;DR: Moving species outside their historic ranges may mitigate loss of biodiversity in the face of global climate change.
Abstract: Moving species outside their historic ranges may mitigate loss of biodiversity in the face of global climate change.

Journal ArticleDOI
TL;DR: In this paper, the authors analyse a 99-year record of hourly precipitation observations from De Bilt, the Netherlands, and find that one-hour precipitation extremes increase twice as fast with rising temperatures as expected from the Clausius-Clapeyron relation when daily mean temperatures exceed 12 ∘C.
Abstract: Changes in precipitation extremes under greenhouse warming are commonly assumed to be constrained by the Clausius–Clapeyron relationship, implying an increase in extreme precipitation of 7% per degree of climate warming. An analysis of 99 years of observations along with simulations with a regional climate model show that short-duration precipitation extremes can instead increase in severity twice as fast, by 14% per degree of warming. Changes in precipitation extremes under greenhouse warming are commonly assumed to be constrained by changes in the amounts of precipitable water in the atmosphere1,2,3,4. Global climate models generally predict only marginal changes in relative humidity5, implying that the actual amount of atmospheric precipitable water scales with the water vapour content of saturation, which is governed by the Clausius–Clapeyron relation. Indeed, changes in daily precipitation extremes in global climate models seem to be consistent with the 7% increase per degree of warming given by the Clausius–Clapeyron relation3,4, but it is uncertain how general this scaling behaviour is across timescales. Here, we analyse a 99-year record of hourly precipitation observations from De Bilt, the Netherlands, and find that one-hour precipitation extremes increase twice as fast with rising temperatures as expected from the Clausius–Clapeyron relation when daily mean temperatures exceed 12 ∘C. In addition, simulations with a high-resolution regional climate model show that one-hour precipitation extremes increase at a rate close to 14% per degree of warming in large parts of Europe. Our results demonstrate that changes in short-duration precipitation extremes may well exceed expectations from the Clausius–Clapeyron relation. These short-duration extreme events can have significant impacts, such as local flooding, erosion and water damage.

Journal ArticleDOI
TL;DR: In this paper, the authors built species distribution models for Svalbard nesting pink-footed geese to relate their occurrence to environmental and climatic variables, and used the models to predict their distribution under a warmer climate scenario.
Abstract: Global climate change is expected to shift species ranges polewards, with a risk of range contractions and population declines of especially high-Arctic species. We built species distribution models for Svalbard-nesting pink-footed geese to relate their occurrence to environmental and climatic variables, and used the models to predict their distribution under a warmer climate scenario. The most parsimonious model included mean May temperature, the number of frost-free months and the proportion of moist and wet mossdominated vegetation in the area. The two climate variables are indicators for whether geese can physiologically fulfil the breeding cycle or not and the moss vegetation is an indicator of suitable feeding conditions. Projections of the distribution to warmer climate scenarios propose a large north- and eastward expansion of the potential breeding range on Svalbard even at modest temperature increases (1 and 21C increase in summer temperature, respectively). Contrary to recent suggestions regarding future distributions of Arctic wildlife, we predict that warming may lead to a further growth in population size of, at least some, Arctic breeding geese.

Journal ArticleDOI
TL;DR: In this article, the authors discuss the remaining policy options against global warming from an intertemporal supply-side perspective, and discuss how suppliers feel threatened by a gradual greening of economic policies in the Kyoto countries that would damage their future prices, thus accelerating global warming.
Abstract: The countries that have ratified the Kyoto Protocol have pledged to limit global warming by reducing the demand for fossil fuels. But what about supply? If suppliers do not react, demand reductions by a subset of countries are ineffective. They simply depress the world price of carbon and induce the environmental sinners to consume what the Kyoto countries have economized on. Even worse, if suppliers feel threatened by a gradual greening of economic policies in the Kyoto countries that would damage their future prices; they will extract their stocks more rapidly, thus accelerating global warming. The paper discusses the remaining policy options against global warming from an intertemporal supply-side perspective.

Journal ArticleDOI
TL;DR: The tropical belt has been widening over past decades, shifting the dry subtropical climate zones polewards around the world as discussed by the authors, and the observed recent rate of expansion is greater than climate model projections of expansion over the twenty-first century, suggesting that there is still much to be learned about this aspect of global climate change.
Abstract: Some of the earliest unequivocal signs of climate change have been the warming of the air and ocean, thawing of land and melting of ice in the Arctic But recent studies are showing that the tropics are also changing Several lines of evidence show that over the past few decades the tropical belt has expanded This expansion has potentially important implications for subtropical societies and may lead to profound changes in the global climate system Most importantly, poleward movement of large-scale atmospheric circulation systems, such as jet streams and storm tracks, could result in shifts in precipitation patterns affecting natural ecosystems, agriculture, and water resources The implications of the expansion for stratospheric circulation and the distribution of ozone in the atmosphere are as yet poorly understood The observed recent rate of expansion is greater than climate model projections of expansion over the twenty-first century, which suggests that there is still much to be learned about this aspect of global climate change The tropical belt has been widening over past decades — as estimated from a number of independent lines of evidence — shifting the dry subtropical climate zones polewards around the world

Journal ArticleDOI
TL;DR: In this paper, a new technique for inferring tropical cyclone climatology from the output of global models, extend it to predict genesis climatologies, and apply it to current and future climate states simulated by a suite of global climate models developed in support of the most recent Intergovernmental Panel on Climate Change report.
Abstract: Changes in tropical cyclone activity are among the more potentially consequential results of global climate change, and it is therefore of considerable interest to understand how anthropogenic climate change may affect such storms. Global climate models are currently used to estimate future climate change, but the current generation of models lacks the horizontal resolution necessary to resolve the intense inner core of tropical cyclones. Here we review a new technique for inferring tropical cyclone climatology from the output of global models, extend it to predict genesis climatologies (rather than relying on historical climatology), and apply it to current and future climate states simulated by a suite of global models developed in support of the most recent Intergovernmental Panel on Climate Change report. This new technique attacks the horizontal resolution problem by using a specialized, coupled ocean-atmosphere hurricane model phrased in angular momentum coordinates, which provide a high resolution ...

Book
30 Sep 2008
TL;DR: In this article, the authors present a decision making framework for climate change in Australia and discuss the impacts of climate change on Australia's emissions and the economy, as well as the role of domestic adaptation, research, development and innovation.
Abstract: Summary of conclusions Introduction 1. Decision making framework 2. The science of climate change 3. Emissions in the platinum age 4. Projecting global climate change. 5. The Australian context to climate change 6. Impacts of climate change on Australia 7. Australia's emissions and the economy 8. Counting the costs 9. International response 10. Towards global agreement 11. Deepening international collaboration. 12. Targets and trajectories 13. Australian climate change policy overview 14. Emissions trading 15. Domestic adaptation policy 16. Research, development and innovation 17. Network infrastructure 18. Information 19. Income distribution 20. The energy transformation 21. The transport transformation 22. Agriculture and forestry transformation 23. Growth and structural change in the low-emissions economy 24. A fateful choice.