scispace - formally typeset
Search or ask a question

Showing papers on "Inhibitory postsynaptic potential published in 1997"


Journal ArticleDOI
10 Jan 1997-Science
TL;DR: In dual whole-cell voltage recordings from pyramidal neurons, the coincidence of post Synaptic action potentials and unitary excitatory postsynaptic potentials was found to induce changes in EPSPs.
Abstract: Activity-driven modifications in synaptic connections between neurons in the neocortex may occur during development and learning In dual whole-cell voltage recordings from pyramidal neurons, the coincidence of postsynaptic action potentials (APs) and unitary excitatory postsynaptic potentials (EPSPs) was found to induce changes in EPSPs Their average amplitudes were differentially up- or down-regulated, depending on the precise timing of postsynaptic APs relative to EPSPs These observations suggest that APs propagating back into dendrites serve to modify single active synaptic connections, depending on the pattern of electrical activity in the pre- and postsynaptic neurons

3,591 citations


Journal ArticleDOI
10 Jan 1997-Science
TL;DR: Modeling work based on experimental measurements indicates that short-term depression of intracortical synapses provides a dynamic gain-control mechanism that allows equal percentage rate changes on rapidly and slowly firing afferents to produce equal postsynaptic responses.
Abstract: Cortical neurons receive synaptic inputs from thousands of afferents that fire action potentials at rates ranging from less than 1 hertz to more than 200 hertz. Both the number of afferents and their large dynamic range can mask changes in the spatial and temporal pattern of synaptic activity, limiting the ability of a cortical neuron to respond to its inputs. Modeling work based on experimental measurements indicates that short-term depression of intracortical synapses provides a dynamic gain-control mechanism that allows equal percentage rate changes on rapidly and slowly firing afferents to produce equal postsynaptic responses. Unlike inhibitory and adaptive mechanisms that reduce responsiveness to all inputs, synaptic depression is input-specific, leading to a dramatic increase in the sensitivity of a neuron to subtle changes in the firing patterns of its afferents.

1,724 citations



Journal ArticleDOI
01 Sep 1997-Neuron
TL;DR: It is shown that two types of inhibitory neurons in the cerebellar cortex fire spontaneously and regularly in the absence of synaptic input but generate an irregular firing pattern in the presence of tonic synaptic inhibition, suggesting that the time window for synaptic integration is a dynamic variable modulated by the level of Tonic inhibition.

679 citations


Journal ArticleDOI
14 Aug 1997-Nature
TL;DR: In this article, it was shown that insulin increases the number of functional postsynaptic GABA(A) receptors, thereby increasing the amplitude of the GABA-A-receptor-mediated miniature inhibitory post-synaptic currents (mIPSCs) without altering their time course.
Abstract: Modification of synaptic strength in the mammalian central nervous system (CNS) occurs at both pre- and postsynaptic sites. However, because postsynaptic receptors are likely to be saturated by released transmitter, an increase in the number of active postsynaptic receptors may be a more efficient way of strengthening synaptic efficacy. But there has been no evidence for a rapid recruitment of neurotransmitter receptors to the postsynaptic membrane in the CNS. Here we report that insulin causes the type A gamma-aminobutyric acid (GABA[A]) receptor, the principal receptor that mediates synaptic inhibition in the CNS, to translocate rapidly from the intracellular compartment to the plasma membrane in transfected HEK 293 cells, and that this relocation requires the beta2 subunit of the GABA(A) receptor. In CNS neurons, insulin increases the expression of GABA(A) receptors on the postsynaptic and dendritic membranes. We found that insulin increases the number of functional postsynaptic GABA(A) receptors, thereby increasing the amplitude of the GABA(A)-receptor-mediated miniature inhibitory postsynaptic currents (mIPSCs) without altering their time course. These results provide evidence for a rapid recruitment of functional receptors to the postsynaptic plasma membrane, suggesting a fundamental mechanism for the generation of synaptic plasticity.

542 citations


Journal ArticleDOI
TL;DR: Three new classes of proteins have been identified in the postsynaptic density at glutamatergic synapses: the PSD-95 family, the NR2B subunit of the NMDA-type glutamate receptor, and densin-180, which might represent a new class of synaptic adhesion molecule.

497 citations


Journal ArticleDOI
TL;DR: The results reconcile previous in vitro and in vivostudies by showing that D1 dopamine receptor activation can either inhibit or enhance evoked activity, depending on the level of membrane depolarization.
Abstract: Most in vitro studies of D1 dopaminergic modulation of excitability in neostriatal medium spiny neurons have revealed inhibitory effects. Yet studies made in more intact preparations have shown that D1 receptors can enhance or inhibit the responses to excitatory stimuli. One explanation for these differences is that the effects of D1 receptors on excitability are dependent on changes in the membrane potential occurring in response to cortical inputs that are seen only in intact preparations. To test this hypothesis, we obtained voltage recordings from medium spiny neurons in slices and examined the impact of D1 receptor stimulation at depolarized and hyperpolarized membrane potentials. As previously reported, evoked discharge was inhibited by D1 agonists when holding at negative membrane potentials (approximately -80 mV). However, at more depolarized potentials (approximately -55 mV), D1 agonists enhanced evoked activity. At these potentials, D1 agonists or cAMP analogs prolonged or induced slow subthreshold depolarizations and increased the duration of barium- or TEA-induced Ca2+-dependent action potentials. Both effects were blocked by L-type Ca2+ channel antagonists (nicardipine, calciseptine) and were occluded by the L-type channel agonist BayK 8644-arguing that the D1 receptor-mediated effects on evoked activity at depolarized membrane potential were mediated by enhancement of L-type Ca2+ currents. These results reconcile previous in vitro and in vivo studies by showing that D1 dopamine receptor activation can either inhibit or enhance evoked activity, depending on the level of membrane depolarization.

497 citations


Journal ArticleDOI
TL;DR: By intracellular and whole cell recording in rat brain slices, it was found that bath-applied serotonin produces an increase in the frequency and amplitude of spontaneous excitatory postsynaptic potentials/currents (EPSPs/EPSCs) in layer V pyramidal cells of neocortex and transitional cortex.

465 citations


Journal ArticleDOI
01 Dec 1997-Neuron
TL;DR: A decrease in post Synaptic receptors leads to an increase in presynaptic transmitter release, indicating that postsynaptic activity controls a retrograde signal that regulates presynptic function.

464 citations


Journal ArticleDOI
09 Oct 1997-Nature
TL;DR: The effects of a potent and selective agonist and a selective antagonist are used to show that kainate receptors, comprised of or containing GluR5 subunits, regulate synaptic inhibition in the hippocampus, an action that could contribute to the epileptogenic effects of kainates.
Abstract: The principal excitatory neurotransmitter in the vertebrate central nervous system, L-glutamate, acts on three classes of ionotripic glutamate receptors, named after the agonists AMPA (α-amino-3-hydroxy-5-methyl-4-isoxalole-4-propionic acid), NMDA ( N -methyl-D-aspartate) and kainate1 The development of selective pharmacological agents has led to a detailed understanding ofthe physiological and pathological roles of AMPA and NMDA receptors2,3,4,5,6,7,8 In contrast, the lack of selective kainate receptor ligands has greatly hindered progress in understanding the rolesof kainate receptors9,10 Here we describe the effects of a potent and selective agonist, ATPA (( RS)-2-amino-3-(3-hydroxy-5- tert -butylisoxazol-4-yl)propanoic acid) and a selective antagonist, LY294486 ((3SR, 4aRS, 6SR, 8aRS)-6-((((1H-tetrazol-5-yl) methyl)oxy)methyl)-1, 2, 3, 4, 4a, 5, 6, 7, 8, 8a-decahydroisoquinoline-3-carboxylic acid), of the GluR5 subtype of kainate receptor11 We have used these agents to show that kainate receptors, comprised of or containing GluR5 subunits, regulate synaptic inhibition in the hippocampus, an action that could contribute to the epileptogenic effects of kainate12,13,14,15,16,17

429 citations


Journal ArticleDOI
TL;DR: The aim of this review is to consider the relative roles of inhibitory and excitatory amino acid receptor-mediated events in the processes leading to pain transmission in the spinal cord, and how the relative balance between activity in these systems appears to determine the level of pain transmission.
Abstract: 1. The aim of this review is to consider the relative roles of inhibitory and excitatory amino acid receptor-mediated events in the processes leading to pain transmission in the spinal cord. 2. Emphasis will be on the roles of the inhibitory and excitatory amino acids, GABA and glutamate, and how the relative balance between activity in these systems appears to determine the level of pain transmission. 3. The N-methyl-D-aspartate (NMDA) receptor for glutamate has been implicated in the generation and maintenance of central (spinal) states of hypersensitivity. It has been shown that activation of this receptor underlies wind-up, whereby the level of transmission of noxious messages is potentiated. Antagonists at this receptor-channel complex prevent or block enhanced (hyperalgesic) pain states induced by tissue damage, inflammation, nerve damage and ischemia. 4. Information concerning amplification systems in the spinal cord, such as the NMDA receptor, is a step toward understanding why and how a painful response is not always matched to the stimulus. Such events have parallels with other plastic events such as long-term potentiation (LTP) in the hippocampus. 5. However, the roles of inhibitory transmitter systems can also change insofar as opioid, adenosine and GABA transmission in the spinal cord can vary in different pain states. 6. Changes in GABA systems have been well-documented and discussion will center on whether this has clinical implications. 7. In addition to behavioral and electrophysiological approaches to the pharmacology of pain the current status of the use of markers of early onset genes such as c-fos, as monitors of activity, will be discussed. 8. Hyperalgesia would appear to be balanced by inhibitions during inflammatory conditions but not in neuropathic states, pains due to nerve damage. In the latter case, events reminiscent of LTP may predominate, whereas they are held in check by inhibitions under conditions of inflammation.

Journal ArticleDOI
TL;DR: The results suggest that GABAergic septo‐hippocampal afferents selectively inhibit hippocampal inhibitory cells and so disinhibit pyramidal cells, which could contribute to the transmission of the theta rhythm from the septum to the hippocampus.
Abstract: 1. Slices were prepared from rat forebrain to include both the septum and the hippocampus in order to examine the effects of septal stimulation on hippocampal inhibitory circuits. 2. Repetitive stimulation of septo-hippocampal fibres caused a maintained decrease in the frequency of spontaneous IPSPs recorded from CA3 pyramidal cells in the presence of antagonists of excitatory amino acid receptors and of muscarine receptors. 3. In records made from pyramidal cells with CsCl-filled electrodes, IPSPs were examined at potentials both more positive and more negative than their reversal potential. Single septal stimuli hyperpolarized pyramidal cells when IPSPs were depolarizing events and depolarized them when IPSPs were hyperpolarizing. The GABAA receptor antagonist picrotoxin abolished the effects of septal stimulation. 4. Activation of septal afferents initiated an IPSP in hippocampal inhibitory cells but not in pyramidal cells. Septal IPSPs had similar kinetics to those initiated by local hippocampal stimulation and could suppress inhibitory cell discharge. 5. In pyramidal cells recorded with potassium acetate-filled electrodes, septal stimuli initiated a depolarization that increased with the driving force for Cl- and that could cause firing. 6. Rhythmic stimulation of septo-hippocampal fibres at 5 Hz initiated, in the hippocampus, a maintained out-of-phase oscillation of pyramidal cell discharge and inhibitory cell firing, as detected by the occurrence of spontaneous IPSPs. 7. These results suggest that GABAergic septo-hippocampal afferents selectively inhibit hippocampal inhibitory cells and so disinhibit pyramidal cells. This disinhibition could contribute to the transmission of the theta rhythm from the septum to the hippocampus.

Journal ArticleDOI
TL;DR: The data suggest that activity regulates cortical inhibition through a BDNF-dependent mechanism and that this neurotrophin plays an important role in the control of cortical excitability.
Abstract: The excitability of cortical circuits is modulated by interneurons that release the inhibitory neurotransmitter GABA. In primate and rodent visual cortex, activity deprivation leads to a decrease in the expression of GABA. This suggests that activity is able to adjust the strength of cortical inhibition, but this has not been demonstrated directly. In addition, the nature of the signal linking activity to GABA expression has not been determined. Activity is known to regulate the expression of the neurotrophin brain-derived neurotrophic factor (BDNF), and BDNF has been shown to influence the phenotype of GABAergic interneurons. We use a culture system from postnatal rat visual cortex to test the hypothesis that activity is regulating the strength of cortical inhibition through the regulation of BDNF. Cultures were double-labeled against GABA and the neuronal marker MAP2, and the percentage of neurons that were GABA-positive was determined. Blocking spontaneous activity in these cultures reversibly decreased the number of GABA-positive neurons without affecting neuronal survival. Voltage-clamp analysis of inhibitory currents demonstrated that activity blockade also decreased GABA-mediated inhibition onto pyramidal neurons and raised pyramidal neuron firing rates. All of these effects were prevented by incubation with BDNF during activity blockade, but not by neurotrophin 3 or nerve growth factor. Additionally, blockade of neurotrophin signaling mimicked the effects of activity blockade on GABA expression. These data suggest that activity regulates cortical inhibition through a BDNF-dependent mechanism and that this neurotrophin plays an important role in the control of cortical excitability.

Journal ArticleDOI
01 Jun 1997-Neuron
TL;DR: In this paper, the authors investigated the transmission of glutamate at a principal neuron-interneuron synapse by dual whole-cell patch-clamp recording in rat hippocampal slices combined with morphological analysis.

Journal ArticleDOI
Kai Kaila1, Karri Lamsa1, Sergei Smirnov1, Tomi Taira1, Juha Voipio1 
TL;DR: The spatial and pharmacological characteristics of the [K+]o shift indicated that it is generated by a local network of GABAergic interneurons, and the GDPSP was dependent on the availability of bicarbonate, but not on interstitial or intrapyramidal carbonic anhydrase activity.
Abstract: Biphasic GABAA-mediated postsynaptic responses can be readily evoked in CA1 pyramidal neurons of rat hippocampal slices by high-frequency stimulus (HFS) trains in the presence of ionotropic glutamate receptor antagonists. In the present experiments with sharp microelectrodes, whole-cell techniques, and K+-selective microelectrodes, an HFS train (40 pulses at 100 Hz) applied in stratum radiatum close to the recording site evoked a brief hyperpolarizing IPSP (hIPSP), which turned into a prolonged (2–3 sec) depolarization (GABA-mediateddepolarizing postsynapticpotential; GDPSP). The I–V relationships of the postsynaptic currents (hIPSC and GDPSC) had distinct characteristics: the hIPSC and the early GDPSC showed outward rectification, whereas the late GDPSC was reduced with positive voltage steps to zero or beyond (inward rectification), but often no clear reversal was seen. That two distinct currents contribute to the generation of the GDPSP was also evident from the finding that a second HFS train at peak or late GDPSP induced a prompt GABAA-mediated hyperpolarization. The GDPSP/C was dependent on the availability of bicarbonate, but not on interstitial or intrapyramidal carbonic anhydrase activity. The HFS train evoked a rapid GABAA-mediated bicarbonate-dependent increase in the extracellular K+ concentration ([K+]o), and the GDPSP followed the K+ transient in a sub-Nernstian manner. The spatial and pharmacological characteristics of the [K+]o shift indicated that it is generated by a local network of GABAergic interneurons. The brief ascending phase of the GDPSP is linked to a K+-dependent accumulation of intracellular Cl−. Thereafter, a nonsynaptic mechanism, a direct depolarizing effect of the [K+]oshift, is responsible for the most conspicuous characteristics of the GDPSP: its large amplitude and prolonged duration.

Journal Article
TL;DR: In this paper, the authors investigated electrophysiologically the nicotinic responses of pyramidal neurons and interneurons visualized by infrared-assisted videomicroscopy and fluorescence in the CA1 field of hippocampal slices obtained from 8- to 24-day-old rats.
Abstract: In the present study we investigated electrophysiologically the nicotinic responses of pyramidal neurons and interneurons visualized by infrared-assisted videomicroscopy and fluorescence in the CA1 field of hippocampal slices obtained from 8- to 24-day-old rats. Application of nicotinic agonists to CA1 neurons evoked at least four types of nicotinic responses. Of major interest was the ability of these agonists to induce the release of gamma-aminobutyric acid (GABA) from interneurons. Slowly decaying ACh whole-cell currents and GABA-mediated postsynaptic currents could be recorded from pyramidal neurons and interneurons, whereas fast-decaying nicotinic currents and fast current transients were recorded only from interneurons. Nicotinic responses were sensitive to blockade by d-tubocurarine (10 microM), which indicated that they were mediated by nicotinic acetylcholine receptors (nAChRs). The slowly decaying currents, the postsynaptic currents and the fast current transients were insensitive to blockade by the alpha-7 nAChR-specific antagonist methyllycaconitine (up to 1 microM) or alpha-bungarotoxin (100 nM). On the other hand, the slowly decaying nicotinic currents recorded from the interneurons were blocked by the alpha4beta2 nAChR-specific antagonist dihydro-beta-erythroidine, and the fast-desensitizing nicotinic currents were evoked by the alpha-7 nAChR-specific agonist choline. In experimental conditions similar to those used to record nicotinic responses from neurons in slice (i. e., in the absence of tetrodotoxin), we observed that nicotinic agonists can also induce the release of GABA from hippocampal neurons in culture. In summary, these results provide direct evidence for more than one subtype of functional nAChR in CA1 neurons and suggest that activation of nAChRs present in GABAergic interneurons can evoke inhibitory activity in CA1 pyramidal neurons, thereby modulating processing of information in the hippocampus.

Journal ArticleDOI
TL;DR: The neocortex, hippocampus, and several other brain regions contain populations of excitatory principal cells with recurrent connections and strong interactions with local inhibitory interneurons, and the dynamic behavior of this type of network is modeled, including external inputs.
Abstract: The neocortex, hippocampus, and several other brain regions contain populations of excitatory principal cells with recurrent connections and strong interactions with local inhibitory interneurons. To improve our understanding of the interactions among these cell types, we modeled the dynamic behavior of this type of network, including external inputs. A surprising finding was that increasing the direct external inhibitory input to the inhibitory interneurons, without directly affecting any other part of the network, can, in some circumstances, cause the interneurons to increase their firing rates. The main prerequisite for this paradoxical response to external input is that the recurrent connections among the excitatory cells are strong enough to make the excitatory network unstable when feedback inhibition is removed. Because this requirement is met in the neocortex and several regions of the hippocampus, these observations have important implications for understanding the responses of interneurons to a variety of pharmacological and electrical manipulations. The analysis can be extended to a scenario with periodically varying external input, where it predicts a systematic relationship between the phase shift and depth of modulation for each interneuron. This prediction was tested by recording from interneurons in the CA1 region of the rat hippocampus in vivo, and the results broadly confirmed the model. These findings have further implications for the function of inhibitory and neuromodulatory circuits, which can be tested experimentally.

Journal ArticleDOI
03 Oct 1997-Science
TL;DR: Activation of single ferret perigeniculate neurons generated three distinct patterns of GABAergic IPSPs in thalamocortical neurons of the dorsal lateral geniculate nucleus, which can reconfigure the operations of thalamOCortical networks into patterns of activity associated with waking, slow-wave sleep, and generalized seizures.
Abstract: The inhibitory gamma-aminobutyric acid-containing (GABAergic) neurons of the thalamic reticular and perigeniculate nuclei are involved in the generation of normal and abnormal synchronized activity in thalamocortical networks. An important factor controlling the generation of activity in this system is the amplitude and duration of inhibitory postsynaptic potentials (IPSPs) in thalamocortical cells, which depend on the pattern of activity generated in thalamic reticular and perigeniculate cells. Activation of single ferret perigeniculate neurons generated three distinct patterns of GABAergic IPSPs in thalamocortical neurons of the dorsal lateral geniculate nucleus: Low-frequency tonic discharge resulted in small-amplitude IPSPs mediated by GABAA receptors, burst firing resulted in large-amplitude GABAA IPSPs, and prolonged burst firing activated IPSPs mediated by GABAA and GABAB receptors. These functional properties of GABAergic inhibition can reconfigure the operations of thalamocortical networks into patterns of activity associated with waking, slow-wave sleep, and generalized seizures.

Journal ArticleDOI
TL;DR: Properties of local synaptic connections in neocortex, studied with dual intracellular recordings in vitro and correlated with cell and synaptic morphology are summarized, showing frequency-dependent, incrementing facilitation at higher presynaptic frequencies.
Abstract: Properties of local synaptic connections in neocortex, studied with dual intracellular recordings in vitro and correlated with cell and synaptic morphology are summarized. The different durations and sensitivities to somatic membrane potential of pyramid-pyramid excitatory postsynaptic potentials (EPSPs) apparently reflect the positions of the synapses on the postsynaptic dendrites. Their time-, frequency- and voltage-dependent properties enable supra-linear summation of several low-frequency inputs arising in the same dendritic region, even if only loosely coincident, but they depress during repetitive firing in any one input. Pyramidal input to classical fast spiking and low threshold spiking interneurones are strikingly different. Here low presynaptic firing rates results in many transmission failures. EPSPs are brief and inputs must be near coincident for summation. However, these synapses display pronounced. frequency-dependent, incrementing facilitation at higher presynaptic frequencies. Once initiated by a brief high-frequency burst, this facilitation is maintained at lower frequencies. GABAA receptor-mediated inhibitory postsynaptic potentials (IPSPs) arising proximally are of very different durations depending on the type of interneurone activated and can prevent and subsequently synchronize firing in their many postsynaptic partners with very different delays (eg. 10-100 ms). Low threshold spiking interneurones, in contrast, generate brief IPSPs only in more distal dendritic regions and have little effect on somatic excitability acting to shunt input distally.

Journal ArticleDOI
01 Oct 1997-Neuron
TL;DR: Results indicate that kainate receptor activation down-regulates GABAergic inhibition by modulating the reliability of GABA synapses and reducing the frequency of miniature IPSCs.

Journal ArticleDOI
TL;DR: Heterologous expression of "regulators of G protein signaling" (RGS proteins), along with cloned G protein-coupled receptors and GIRK channels, reconstitutes the temporal properties of the native G protein gated inward rectifier K+ signal transduction pathway.
Abstract: G protein-gated inward rectifier K+ (GIRK) channels mediate hyperpolarizing postsynaptic potentials in the nervous system and in the heart during activation of Gα(i/o)-coupled receptors. In neurons and cardiac atrial cells the time course for receptor-mediated GIRK current deactivation is 20–40 times faster than that observed in heterologous systems expressing cloned receptors and GIRK channels, suggesting that an additional component(s) is required to confer the rapid kinetic properties of the native transduction pathway. We report here that heterologous expression of “regulators of G protein signaling” (RGS proteins), along with cloned G protein-coupled receptors and GIRK channels, reconstitutes the temporal properties of the native receptor → GIRK signal transduction pathway. GIRK current waveforms evoked by agonist activation of muscarinic m2 receptors or serotonin 1A receptors were dramatically accelerated by coexpression of either RGS1, RGS3, or RGS4, but not RGS2. For the brain-expressed RGS4 isoform, neither the current amplitude nor the steady-state agonist dose-response relationship was significantly affected by RGS expression, although the agonist-independent “basal” GIRK current was suppressed by ≈40%. Because GIRK activation and deactivation kinetics are the limiting rates for the onset and termination of “slow” postsynaptic inhibitory currents in neurons and atrial cells, RGS proteins may play crucial roles in the timing of information transfer within the brain and to peripheral tissues.

Journal ArticleDOI
TL;DR: It is reported that BDNF, within 5 min of exposure, elicits a dose-dependent increase in phosphorylation of the N-methyl-D-aspartate receptor subunit 1, suggesting a potential mechanism for trophin-induced potentiation of synaptic transmission.
Abstract: Although neurotrophins have traditionally been regarded as neuronal survival factors, recent work has suggested a role for these factors in synaptic plasticity. In particular, brain-derived neurotrophic factor (BDNF) rapidly enhances synaptic transmission in hippocampal neurons through trkB receptor stimulation and postsynaptic phosphorylation mechanisms. Activation of trkB also modulates hippocampal long-term potentiation, in which postsynaptic N-methyl-d-aspartate glutamate receptors play a key role. However, the final common pathway through which BDNF increases postsynaptic responsiveness is unknown. We now report that BDNF, within 5 min of exposure, elicits a dose-dependent increase in phosphorylation of the N-methyl-d-aspartate receptor subunit 1. This acute effect occurred in hippocampal synaptoneurosomes, which contain pre- and postsynaptic elements, and in isolated hippocampal postsynaptic densities. Nerve growth factor, in contrast, caused no enhancement of phosphorylation. These results suggest a potential mechanism for trophin-induced potentiation of synaptic transmission.

Journal ArticleDOI
TL;DR: The results indicate that spontaneous transmission onto cerebellar granule cells in immature animals consists primarily of action potential‐dependent, phasic release of vesicular GABA, which generates GABAA receptor‐mediated slPSCs.
Abstract: The postnatal development of spontaneous GABAergic transmission between cerebellar Golgi cells and granule cells was investigated with voltage-clamp recording from rat cerebellar slices, in symmetrical Cl- conditions. Between postnatal days 7 and 14 (P7-14), bicuculline- and TTX (tetrodotoxin)-sensitive spontaneous inhibitory postsynaptic currents (sIPSCs), occurred at high frequency in 56% of granule cells. Between P10 and P14, sIPSCs were superimposed on a tonic current of -12 +/- 1.8 pA at -70 mV, that was accompanied by noise with a variance of 17 +/- 3 pA2. Both the current and noise were inhibited by bicuculline. TTX blocked the bicuculline-sensitive current and noise by approximately 60%. Between P18 and P25, sIPSCs were less frequent; all cells showed tonic, bicuculline-sensitive currents, but these were partially inhibited by TTX (approximately 35%). Between P40 and P53, sIPSCs were rare; tonic, bicuculline-sensitive currents and noise were greater in amplitude, with mean values of -17 pA and 22 pA2 at -70 mV, they were present in all cells but they were not inhibited by TTX. Glycine receptor channels that were expressed in immature, but not adult cells, did not mediate spontaneous currents. Our results indicate that spontaneous transmission onto cerebellar granule cells in immature animals consists primarily of action potential-dependent, phasic release of vesicular GABA. This generates GABAA receptor-mediated sIPSCs. The effects of GABA transporter blockers suggest that it also produces the TTX-sensitive current-noise, as GABA spills out of synapses to activate extrasynaptic receptors or receptors in neighbouring synapses. In older animals, action potential-independent release of transmitter is predominant and results in tonic activation of GABAA receptors. This does not appear to be spontaneous vesicular release of GABA. Neither does it appear to be reversed uptake of GABA, although further work is required to rule out these possibilities.

Journal ArticleDOI
TL;DR: It is suggested that the main mechanism contributing to the robust depression elicited by 5–10 Hz afferent fiber stimulation of the calyx of Held synapse is synaptic vesicle pool depletion.
Abstract: Synaptic depression of evoked EPSCs was quantified with stimulation frequencies ranging from 0.2 to 100 Hz at the single CNS synapse formed by the calyx of Held in the rat brainstem. Half-maximal depression occurred at approximately 1 Hz, with 10 and 100 Hz stimulation frequencies reducing EPSC amplitudes to approximately 30% and approximately 10% of their initial magnitude, respectively. The time constant of recovery from depression elicited by 10 Hz afferent fiber stimulation was 4.2 sec. AMPA and NMDA receptor-mediated EPSCs depressed in parallel at 1-5 Hz stimulation frequencies, suggesting that depression was induced by presynaptic mechanism(s) that reduced glutamate release. To determine the contribution of autoreceptors to depression, we studied the inhibitory effects of the metabotropic glutamate receptor (mGluR) agonists (1S, 3S)-ACPD and L-AP4 and found them to be reversed in a dose-dependent manner by (RS)-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG), a novel and potent competitive antagonist of mGluRs. At 300 microM, CPPG completely reversed the effects of L-AP4 and (1S, 3S)-ACPD, but reduced 5-10 Hz elicited depression by only approximately 6%. CPPG-sensitive mGluRs, presumably activated by glutamate spillover during physiological synaptic transmission, thus contribute on the order of only 10% to short-term synaptic depression. We therefore suggest that the main mechanism contributing to the robust depression elicited by 5-10 Hz afferent fiber stimulation of the calyx of Held synapse is synaptic vesicle pool depletion.

Journal ArticleDOI
TL;DR: A novel mechanism by which ACh can regulate neuronal activity in the hippocampus is revealed and the presence of functional nAChRs on inhibitory interneurones in the rat hippocampus is demonstrated.
Abstract: 1. Neuronal nicotinic ACh receptors (nAChRs) were studied in the rat hippocampal slice preparation using whole-cell patch-clamp recording techniques. 2. Responses to ACh (100 microM) were detected on inhibitory interneurones in the Ca1 field of the hippocampus proper and in the dentate gyrus, but not on principal excitatory neurones in either region. The different neuronal types were identified based on their morphology and location. 3. ACh excited interneurones in the hippocampus and dentate gyrus in current-clamp recordings. In voltage-clamp recordings, ACh-activated inward currents were recorded from interneurones in the presence of blockers of synaptic transmission and the muscarinic ACh receptor antagonist atropine. The zero current potential for this response to ACh was near 0 mV. 4. The effect of ACh was mimicked by the nAChR-selective agonists nicotine (100 microM) and 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP, 100 microM). The response to ACh was reversibly antagonized by the neuronal nAChR antagonist mecamylamine (10 microM). The nAChR alpha 7 subunit-selective antagonists alpha-bungarotoxin (100 nM) and methyllycaconitine (10 nM) also inhibited the response to ACh. 5. These observations demonstrate the presence of functional nAChRs on inhibitory interneurones in the rat hippocampus. Thus, a novel mechanism by which ACh can regulate neuronal activity in the hippocampus is revealed.

Journal ArticleDOI
TL;DR: Quantitative electron microscopy data indicate that inhibitory synaptogenesis in the rodent cortex begins earlier than previously thought, a basis for inhibition being present from the earliest period.
Abstract: It is widely believed that inhibitory synapses are not present or present in only small numbers in the rodent cerebral cortex during the early postnatal period when the cortex is being innervated by thalamocortical fibers. Quantitative electron microscopy was carried out on the posteromedial barrel subfield of mouse somatosensory cortex from postnatal day 4 (P4) when thalamocortical innervation of the barrels is becoming established, through to sexual maturity (>P32), and in adulthood. Both asymmetrical (putatively excitatory) and symmetrical (putatively inhibitory) synapses were present in all layers from P4. The symmetrical synapses were immunoreactive for GABA at all ages. There was a progressive increase in both asymmetrical and symmetrical synapses up to P32, density in all layers increasing 16-fold, with the production of asymmetrical synapses leading and greatly outstripping that of symmetrical. From P32 to P120, the oldest age studied, synaptic numbers declined by 18% to 13 times the P4 level, but this affected predominantly layers II/III, IV and V, and mainly involved asymmetrical synapses. The relative percentage of asymmetrical to symmetrical synapses from P4 to P8 was 57%/43% but at P32 it was 89.5%/10.5% and in adulthood 85.4%/14.6%. These data indicate that inhibitory synaptogenesis in the rodent cortex begins earlier than previously thought, a basis for inhibition being present from the earliest period. Pruning of all synapses occurs well after thalamocortical innervation is established and inhibitory synapses are less affected by the pruning process.

Journal ArticleDOI
TL;DR: In this paper, the effects of synapses established by smooth dendritic neurones on pyramidal and spiny stellate cells were studied in areas 17 and 18 of the cat visual cortex in vitro.
Abstract: 1. The effects of synapses established by smooth dendritic neurones on pyramidal and spiny stellate cells were studied in areas 17 and 18 of the cat visual cortex in vitro. Paired intracellular recordings with biocytin-filled electrodes and subsequent light and electron microscopic analysis were used to determine the sites of synaptic interaction. 2. All smooth dendritic cells established type II synapses previously shown to be made by terminals containing GABA, therefore the studied cells are probably GABAergic. Three classes of presynaptic cell could be defined, based on their efferent synaptic target preference determined from random samples of unlabelled postsynaptic cells. (a) Basket cells (n = 6) innervated mainly somata (49.9 +/- 13.8%) and dendritic shafts (45.2 +/- 10.7%) and, to a lesser extent, dendritic spines (4.9 +/- 4.6%). (b) Dendrite-targeting cells (n = 5) established synapses predominantly on dendritic shafts (84.3 +/- 9.4%) and less frequently on dendritic spines (11.2 +/- 6.7%) or somata (4.5 +/- 4.7%). (c) Double bouquet cells (n = 4) preferred dendritic spines (69.2 +/- 4.2%) to dendritic shafts (30.8 +/- 4.2%) as postsynaptic targets and avoided somata. 3. Interneurones formed 5240 +/- 1600 (range, 2830-9690) synaptic junctions in the slices. Based on the density of synapses made by single interneurones and the volume density of GABAergic synapses, it was calculated that an average interneurone provides 0.66 +/- 0.20% of the GABAergic synapses in its axonal field. 4. The location of synaptic junctions on individual, identified postsynaptic cells reflected the overall postsynaptic target distribution of the same GABAergic neurone. The number of synaptic junctions between pairs of neurones could not be predicted from light microscopic examination. The number of electron microscopically verified synaptic sites was generally smaller for the dendritic domain and larger for the somatic domain than expected from light microscopy. All presynaptic cells established multiple synaptic junctions on their postsynaptic target cells. A basket cell innervated a pyramidal cell via fifteen release sites; the numbers of synapses formed by three dendrite-targeting cells on pyramidal cells were seventeen and eight respectively, and three on a spiny stellate cell; the interaction between a double bouquet cell and a postsynaptic pyramidal cell was mediated by ten synaptic junctions. 5. All three types of interneurone (n = 6; 2 for each type of cell) elicited short-latency IPSPs with fast rise time (10-90%; 2.59 +/- 1.02 ms) and short duration (at half-amplitude, 15.82 +/- 5.24 ms), similar to those mediated by GABAA receptors. 6. Average amplitudes of unitary IPSPs (n = 6) were 845 +/- 796 microV (range, 134-2265 microV). Variability of IPSP amplitude was moderate, the average ratio of IPSP and baseline noise variance was 1.54 +/- 0.96. High frequency activation of single presynaptic dendrite-targeting cells led to an initial summation followed by use-dependent depression of the averaged postsynaptic response. Double bouquet cell-evoked IPSPs, recorded in the soma, had a smaller amplitude than those evoked by the other two cell types. In all connections, transmission failures were rare or absent, particularly when mediated by a high number of release sites. 7. The results demonstrate that different types of neocortical GABAergic neurones innervate distinct domains on the surface of their postsynaptic target cells. Nevertheless, all three types of cell studied here elicit fast IPSPs and provide GABAergic input through multiple synaptic release sites with few, if any, failures of transmission.

Journal ArticleDOI
TL;DR: It is shown that shunting inhibition actually has a subtractive effect on the firing rate in most circumstances, and regulating a cell's passive membrane conductance via massive feedback is not an adequate mechanism for normalizing or scaling its output.
Abstract: Shunting inhibition, a conductance increase with a reversal potential close to the resting potential of the cell, has been shown to have a divisive effect on subthreshold excitatory postsynaptic potential amplitudes It has therefore been assumed to have the same divisive effect on firing rates We show that shunting inhibition actually has a subtractive effecton the firing rate in most circumstances Averaged over several interspike intervals, the spiking mechanism effectively clamps the somatic membrane potential to a value significantly above the resting potential, so that the current through the shunting conductance is approximately independent of the firing rate This leads to a subtractive rather than a divisive effect In addition, at distal synapses, shunting inhibition will also have an approximately subtractive effect if the excitatory conductance is not small compared to the inhibitory conductance Therefore regulating a cell's passive membrane conductance—for instance, via massive feedback—is not an adequate mechanism for normalizing or scaling its output

Journal ArticleDOI
TL;DR: The results suggest that in general the lateral connectivity system is not orientation specific, but shows a moderate iso-orientation preference for excitation and an even weaker iso- orientation preference for inhibition.
Abstract: The topography of lateral excitatory and lateral inhibitory connections was studied in relation to orientation maps obtained in areas 17 and 18. Small iontophoretic injections of biocytin were delivered to the superficial layers in regions where orientation selectivity had been mapped using electrode recordings of single- and multi-unit activity from various cortical depths. Biocytin revealed extensive patchy axonal projections of up to 3.5 mm in both areas while labelled somata occurred chiefly at the injection site, indicating that the labelling was primarily anterograde. Two types of boutons could be clearly distinguished: (i) putative excitatory boutons either en passant or having a short stalk and (ii) inhibitory boutons which were invariably of the basket-type. Three-dimensional reconstructions of all labelled boutons showed that the excitatory and the inhibitory networks had a distinctively different relationship to orientation maps. The overall distribution of connections showed that 53-59% of excitatory and 46-48% of inhibitory connections were at iso-orientation, +/-30 degrees; oblique-orientation, +/-(30-60) degrees, was shown by 30% of excitatory and 28-39% of inhibitory connections; cross-orientation was shown by 11-17% of excitatory and 15-24% of inhibitory connections. Although excitatory patches occupied mainly iso-orientation locations, interpatch regions representing chiefly non-iso-orientations (oblique + cross orientation) were also innervated. There was considerable overlap between the excitatory and inhibitory network. Nonetheless, inhibitory connections were more common than excitatory connections with non-iso-orientation locations. There was no significant difference between the orientation topography of area 17 and area 18 projections. The results suggest that in general the lateral connectivity system is not orientation specific, but shows a moderate iso-orientation preference for excitation and an even weaker iso-orientation preference for inhibition. The broad orientation spectrum of lateral connections could provide the basis for mechanisms that requiring different orientations, as for example in detecting orientation discontinuities.

Journal ArticleDOI
01 Nov 1997-Neuron
TL;DR: It is found that magnocellular oxytocin neurons in adult female rats exhibit an endogenous GABA(A) receptor subunit switch around parturition: a decrease in alpha1:alpha2 subunit mRNA ratio correlated with a decreases in allopregnanolone potentiation and increase in decay time constant of the GABA( A) receptor-mediated IPSCs in these cells.