scispace - formally typeset
Search or ask a question

Showing papers on "Interaction network published in 2012"


Journal ArticleDOI
TL;DR: This work considers four different drug-target interaction networks from humans involving enzymes, ion channels, G-protein-coupled receptors and nuclear receptors and proposes a novel Bayesian formulation that combines dimensionality reduction, matrix factorization and binary classification for predicting drug- target interaction networks.
Abstract: Motivation: Identifying interactions between drug compounds and target proteins has a great practical importance in the drug discovery process for known diseases. Existing databases contain very few experimentally validated drug–target interactions and formulating successful computational methods for predicting interactions remains challenging. Results: In this study, we consider four different drug–target interaction networks from humans involving enzymes, ion channels, G-protein-coupled receptors and nuclear receptors. We then propose a novel Bayesian formulation that combines dimensionality reduction, matrix factorization and binary classification for predicting drug–target interaction networks using only chemical similarity between drug compounds and genomic similarity between target proteins. The novelty of our approach comes from the joint Bayesian formulation of projecting drug compounds and target proteins into a unified subspace using the similarities and estimating the interaction network in that subspace. We propose using a variational approximation in order to obtain an efficient inference scheme and give its detailed derivations. Finally, we demonstrate the performance of our proposed method in three different scenarios: (i) exploratory data analysis using low-dimensional projections, (ii) predicting interactions for the out-of-sample drug compounds and (iii) predicting unknown interactions of the given network. Availability: Software and Supplementary Material are available at http://users.ics.aalto.fi/gonen/kbmf2k. Contact: mehmet.gonen@aalto.fi Supplementary information:Supplementary data are available at Bioinformatics online.

358 citations


Journal ArticleDOI
TL;DR: Interactions between human spliceosomal proteins suggest that during step 1 of splicing, hPRP8 interactions with SF3b proteins are replaced by hSLU7, positioning this second step factor close to the active site, and that the DEAH-box helicases h PRP2 and hPRp16 cooperate through ordered interactions with GPKOW.

349 citations


Journal ArticleDOI
TL;DR: The second version of PINA enhances its utility for studies ofprotein interactions at a network level, by including multiple collections of interaction modules identified by different clustering approaches from the whole network of protein interactions (‘interactome’) for six model organisms.
Abstract: The Protein Interaction Network Analysis (PINA) platform is a comprehensive web resource, which includes a database of unified protein-protein interaction data integrated from six manually curated public databases, and a set of built-in tools for network construction, filtering, analysis and visualization. The second version of PINA enhances its utility for studies of protein interactions at a network level, by including multiple collections of interaction modules identified by different clustering approaches from the whole network of protein interactions ('interactome') for six model organisms. All identified modules are fully annotated by enriched Gene Ontology terms, KEGG pathways, Pfam domains and the chemical and genetic perturbations collection from MSigDB. Moreover, a new tool is provided for module enrichment analysis in addition to simple query function. The interactome data are also available on the web site for further bioinformatics analysis. PINA is freely accessible at http://cbg.garvan.unsw.edu.au/pina/.

324 citations


Journal ArticleDOI
TL;DR: This chapter shows how physical and functional networks are used to leverage genotype, gene expression, and other types of data to identify dysregulated pathways, infer the relationships between genotype and phenotype, and explain disease heterogeneity.
Abstract: Complex diseases are caused by a combination of genetic and environmental factors. Uncovering the molecular pathways through which genetic factors affect a phenotype is always difficult, but in the case of complex diseases this is further complicated since genetic factors in affected individuals might be different. In recent years, systems biology approaches and, more specifically, network based approaches emerged as powerful tools for studying complex diseases. These approaches are often built on the knowledge of physical or functional interactions between molecules which are usually represented as an interaction network. An interaction network not only reports the binary relationships between individual nodes but also encodes hidden higher level organization of cellular communication. Computational biologists were challenged with the task of uncovering this organization and utilizing it for the understanding of disease complexity, which prompted rich and diverse algorithmic approaches to be proposed. We start this chapter with a description of the general characteristics of complex diseases followed by a brief introduction to physical and functional networks. Next we will show how these networks are used to leverage genotype, gene expression, and other types of data to identify dysregulated pathways, infer the relationships between genotype and phenotype, and explain disease heterogeneity. We group the methods by common underlying principles and first provide a high level description of the principles followed by more specific examples. We hope that this chapter will give readers an appreciation for the wealth of algorithmic techniques that have been developed for the purpose of studying complex diseases as well as insight into their strengths and limitations.

265 citations


Journal ArticleDOI
TL;DR: The integration of protein-protein interaction network and gene expression data can help improve the precision of predicting essential proteins, and the proposed new centrality measure PeC is an effective essential protein discovery method.
Abstract: Background: Identification of essential proteins is always a challenging task since it requires experimental approaches that are time-consuming and laborious. With the advances in high throughput technologies, a large number of protein-protein interactions are available, which have produced unprecedented opportunities for detecting proteins’ essentialities from the network level. There have been a series of computational approaches proposed for predicting essential proteins based on network topologies. However, the network topology-based centrality measures are very sensitive to the robustness of network. Therefore, a new robust essential protein discovery method would be of great value. Results: In this paper, we propose a new centrality measure, named PeC, based on the integration of proteinprotein interaction and gene expression data. The performance of PeC is validated based on the protein-protein interaction network of Saccharomyces cerevisiae. The experimental results show that the predicted precision of PeC clearly exceeds that of the other fifteen previously proposed centrality measures: Degree Centrality (DC), Betweenness Centrality (BC), Closeness Centrality (CC), Subgraph Centrality (SC), Eigenvector Centrality (EC), Information Centrality (IC), Bottle Neck (BN), Density of Maximum Neighborhood Component (DMNC), Local Average Connectivity-based method (LAC), Sum of ECC (SoECC), Range-Limited Centrality (RL), L-index (LI), Leader Rank (LR), Normalized a-Centrality (NC), and Moduland-Centrality (MC). Especially, the improvement of PeC over the classic centrality measures (BC, CC, SC, EC, and BN) is more than 50% when predicting no more than 500 proteins. Conclusions: We demonstrate that the integration of protein-protein interaction network and gene expression data can help improve the precision of predicting essential proteins. The new centrality measure, PeC, is an effective essential protein discovery method.

209 citations


Journal ArticleDOI
TL;DR: This study showed that the sophisticated computational approach developed provides a powerful platform to decipher protein recognition code at the molecular level but also allows identification of peptide-mediated protein interactions at a proteomic scale.
Abstract: Determination of the binding specificity of SH3 domain, a peptide recognition module (PRM), is important to understand their biological functions and reconstruct the SH3-mediated protein−protein interaction network. In the present study, the SH3-peptide interactions for both class I and II SH3 domains were characterized by the intermolecular residue−residue interaction network. We developed generic MIEC-SVM models to infer SH3 domain-peptide recognition specificity that achieved satisfactory prediction accuracy. By investigating the domain−peptide recognition mechanisms at the residue level, we found that the class-I and class-II binding peptides have different binding modes even though they occupy the same binding site of SH3. Furthermore, we predicted the potential binding partners of SH3 domains in the yeast proteome and constructed the SH3- mediated protein−protein interaction network. Comparison with the exper- imentally determined interactions confirmed the effectiveness of our approach. This study showed that our sophisticated computational approach not only provides a powerful platform to decipher protein recognition code at the molecular level but also allows identification of peptide- mediated protein interactions at a proteomic scale. We believe that such an approach is general to be applicable to other domain−peptide interactions.

192 citations


Journal ArticleDOI
TL;DR: It is demonstrated that cancer cells are characterised by an increase in network entropy, and it is formally demonstrated that gene expression differences between normal and cancer tissue are anticorrelated with local network entropy changes, thus providing a systemic link between gene expression changes at the nodes and their local correlation patterns.
Abstract: The cellular phenotype is described by a complex network of molecular interactions. Elucidating network properties that distinguish disease from the healthy cellular state is therefore of critical importance for gaining systems-level insights into disease mechanisms and ultimately for developing improved therapies. By integrating gene expression data with a protein interaction network we here demonstrate that cancer cells are characterised by an increase in network entropy. In addition, we formally demonstrate that gene expression differences between normal and cancer tissue are anticorrelated with local network entropy changes, thus providing a systemic link between gene expression changes at the nodes and their local correlation patterns. In particular, we find that genes which drive cell-proliferation in cancer cells and which often encode oncogenes are associated with reductions in network entropy. These findings may have potential implications for identifying novel drug targets.

174 citations


Journal ArticleDOI
TL;DR: Overlapping Cluster Generator (OCG), a novel clustering method which decomposes a network into overlapping clusters and which is, therefore, capable of correct assignment of multifunctional proteins, is presented.
Abstract: Motivation: Multifunctional proteins perform several functions. They are expected to interact specifically with distinct sets of partners, simultaneously or not, depending on the function performed. Current graph clustering methods usually allow a protein to belong to only one cluster, therefore impeding a realistic assignment of multifunctional proteins to clusters. Results: Here, we present Overlapping Cluster Generator (OCG), a novel clustering method which decomposes a network into overlapping clusters and which is, therefore, capable of correct assignment of multifunctional proteins. The principle of OCG is to cover the graph with initial overlapping classes that are iteratively fused into a hierarchy according to an extension of Newman's modularity function. By applying OCG to a human protein–protein interaction network, we show that multifunctional proteins are revealed at the intersection of clusters and demonstrate that the method outperforms other existing methods on simulated graphs and PPI networks. Availability: This software can be downloaded from http://tagc.univ-mrs.fr/welcome/spip.php?rubrique197 Contact: brun@tagc.univ-mrs.fr Supplementary information:Supplementary data are available at Bioinformatics online.

123 citations


Journal ArticleDOI
TL;DR: A novel approach is proposed that effectively identifies dysregulated pathways, which can not only be used as biomarkers to diagnose cancers but also serve as potential drug targets in the future.
Abstract: Background: Cancers, a group of multifactorial complex diseases, are generally caused by mutation of multiple genes or dysregulation of pathways. Identifying biomarkers that can characterize cancers would help to understand and diagnose cancers. Traditional computational methods that detect genes differentially expressed between cancer and normal samples fail to work due to small sample size and independent assumption among genes. On the other hand, genes work in concert to perform their functions. Therefore, it is expected that dysregulated pathways will serve as better biomarkers compared with single genes. Results: In this paper, we propose a novel approach to identify dysregulated pathways in cancer based on a pathway interaction network. Our contribution is three-fold. Firstly, we present a new method to construct pathway interaction network based on gene expression, protein-protein interactions and cellular pathways. Secondly, the identification of dysregulated pathways in cancer is treated as a feature selection problem, which is biologically reasonable and easy to interpret. Thirdly, the dysregulated pathways are identified as subnetworks from the pathway interaction networks, where the subnetworks characterize very well the functional dependency or crosstalk between pathways. The benchmarking results on several distinct cancer datasets demonstrate that our method can obtain more reliable and accurate results compared with existing state of the art methods. Further functional analysis and independent literature evidence also confirm that our identified potential pathogenic pathways are biologically reasonable, indicating the effectiveness of our method. Conclusions: Dysregulated pathways can serve as better biomarkers compared with single genes. In this work, by utilizing pathway interaction networks and gene expression data, we propose a novel approach that effectively identifies dysregulated pathways, which can not only be used as biomarkers to diagnose cancers but also serve as potential drug targets in the future.

116 citations


Journal ArticleDOI
TL;DR: In this article, the authors show that cancer cells are characterized by an increase in the dynamic network entropy, compared to cells of normal physiology, and that genes that drive cell proliferation in cancer cells and which often encode oncogenes are associated with reductions in the dynamics of the dynamic networks.
Abstract: The cellular phenotype is described by a complex network of molecular interactions. Elucidating network properties that distinguish disease from the healthy cellular state is therefore of critical importance for gaining systems-level insights into disease mechanisms and ultimately for developing improved therapies. By integrating gene expression data with a protein interaction network to induce a stochastic dynamics on the network, we here demonstrate that cancer cells are characterised by an increase in the dynamic network entropy, compared to cells of normal physiology. Using a fundamental relation between the macroscopic resilience of a dynamical system and the uncertainty (entropy) in the underlying microscopic processes, we argue that cancer cells will be more robust to random gene perturbations. In addition, we formally demonstrate that gene expression differences between normal and cancer tissue are anticorrelated with local dynamic entropy changes, thus providing a systemic link between gene expression changes at the nodes and their local network dynamics. In particular, we also find that genes which drive cell-proliferation in cancer cells and which often encode oncogenes are associated with reductions in the dynamic network entropy. In summary, our results support the view that the observed increased robustness of cancer cells to perturbation and therapy may be due to an increase in the dynamic network entropy that allows cells to adapt to the new cellular stresses. Conversely, genes that exhibit local flux entropy decreases in cancer may render cancer cells more susceptible to targeted intervention and may therefore represent promising drug targets.

112 citations


Journal ArticleDOI
TL;DR: Environmental contingency is established in the first chaperone network of a fungal pathogen, novel effectors upstream and downstream of Hsp90 are established, and network rewiring over evolutionary time is established.
Abstract: The molecular chaperone Hsp90 regulates the folding of diverse signal transducers in all eukaryotes, profoundly affecting cellular circuitry. In fungi, Hsp90 influences development, drug resistance, and evolution. Hsp90 interacts with ∼10% of the proteome in the model yeast Saccharomyces cerevisiae, while only two interactions have been identified in Candida albicans, the leading fungal pathogen of humans. Utilizing a chemical genomic approach, we mapped the C. albicans Hsp90 interaction network under diverse stress conditions. The chaperone network is environmentally contingent, and most of the 226 genetic interactors are important for growth only under specific conditions, suggesting that they operate downstream of Hsp90, as with the MAPK Hog1. Few interactors are important for growth in many environments, and these are poised to operate upstream of Hsp90, as with the protein kinase CK2 and the transcription factor Ahr1. We establish environmental contingency in the first chaperone network of a fungal pathogen, novel effectors upstream and downstream of Hsp90, and network rewiring over evolutionary time.

Journal ArticleDOI
21 Sep 2012-PLOS ONE
TL;DR: A genome-wide network-based prioritization framework named GUILD, which is able to significantly highlight disease-gene associations that are not used a priori, is proposed and suggested to identify genes implicated in the pathology of human disorders independent of the loci associated with the disorders.
Abstract: Complex genetic disorders often involve products of multiple genes acting cooperatively. Hence, the pathophenotype is the outcome of the perturbations in the underlying pathways, where gene products cooperate through various mechanisms such as protein-protein interactions. Pinpointing the decisive elements of such disease pathways is still challenging. Over the last years, computational approaches exploiting interaction network topology have been successfully applied to prioritize individual genes involved in diseases. Although linkage intervals provide a list of disease-gene candidates, recent genome-wide studies demonstrate that genes not associated with any known linkage interval may also contribute to the disease phenotype. Network based prioritization methods help highlighting such associations. Still, there is a need for robust methods that capture the interplay among disease-associated genes mediated by the topology of the network. Here, we propose a genome-wide network-based prioritization framework named GUILD. This framework implements four network-based disease-gene prioritization algorithms. We analyze the performance of these algorithms in dozens of disease phenotypes. The algorithms in GUILD are compared to state-of-the-art network topology based algorithms for prioritization of genes. As a proof of principle, we investigate top-ranking genes in Alzheimer's disease (AD), diabetes and AIDS using disease-gene associations from various sources. We show that GUILD is able to significantly highlight disease-gene associations that are not used a priori. Our findings suggest that GUILD helps to identify genes implicated in the pathology of human disorders independent of the loci associated with the disorders.

Journal ArticleDOI
TL;DR: It is shown that about one-third of all RefSeq sequences can be annotated with IBIS interaction partners and binding sites, which presents an expandable interaction network to elucidate the formation of protein complexes.
Abstract: We have recently developed the Inferred Biomolecular Interaction Server (IBIS) and database, which reports, predicts and integrates different types of interaction partners and locations of binding sites in proteins based on the analysis of homologous structural complexes. Here, we highlight several new IBIS features and options. The server's webpage is now redesigned to allow users easier access to data for different interaction types. An entry page is added to give a quick summary of available results and to now accept protein sequence accessions. To elucidate the formation of protein complexes, not just binary interactions, IBIS currently presents an expandable interaction network. Previously, IBIS provided annotations for four different types of binding partners: proteins, small molecules, nucleic acids and peptides; in the current version a new protein-ion interaction type has been added. Several options provide easy downloads of IBIS data for all Protein Data Bank (PDB) protein chains and the results for each query. In this study, we show that about one-third of all RefSeq sequences can be annotated with IBIS interaction partners and binding sites. The IBIS server is available at http://www.ncbi.nlm.nih.gov/Structure/ibis/ibis.cgi and updated biweekly.

Journal ArticleDOI
TL;DR: CanSAR can, in a single place, rapidly identify biological annotation of a target, its structural characterization, expression levels and protein interaction data, as well as suitable cell lines for experiments, potential tool compounds and similarity to known drug targets.
Abstract: canSAR is a fully integrated cancer research and drug discovery resource developed to utilize the growing publicly available biological annotation, chemical screening, RNA interference screening, expression, amplification and 3D structural data. Scientists can, in a single place, rapidly identify biological annotation of a target, its structural characterization, expression levels and protein interaction data, as well as suitable cell lines for experiments, potential tool compounds and similarity to known drug targets. canSAR has, from the outset, been completely use-case driven which has dramatically influenced the design of the back-end and the functionality provided through the interfaces. The Web interface at http://cansar.icr.ac.uk provides flexible, multipoint entry into canSAR. This allows easy access to the multidisciplinary data within, including target and compound synopses, bioactivity views and expert tools for chemogenomic, expression and protein interaction network data.

Journal ArticleDOI
TL;DR: Compared the topological properties of the interaction network between flower-visiting social wasps and plants in two distinct phytophysiognomies in a Brazilian savanna showed that the landscapes differed in species richness and composition, and also the interaction networks between wasp and plants had different patterns.
Abstract: Network analysis as a tool for ecological interactions studies has been widely used since last decade. However, there are few studies on the factors that shape network patterns in communities. In this sense, we compared the topological properties of the interaction network between flower-visiting social wasps and plants in two distinct phytophysiognomies in a Brazilian savanna (Riparian Forest and Rocky Grassland). Results showed that the landscapes differed in species richness and composition, and also the interaction networks between wasps and plants had different patterns. The network was more complex in the Riparian Forest, with a larger number of species and individuals and a greater amount of connections between them. The network specialization degree was more generalist in the Riparian Forest than in the Rocky Grassland. This result was corroborated by means of the nestedness index. In both networks was found asymmetry, with a large number of wasps per plant species. In general aspects, most wasps had low niche amplitude, visiting from one to three plant species. Our results suggest that differences in structural complexity of the environment directly influence the structure of the interaction network between flower-visiting social wasps and plants.

Journal ArticleDOI
TL;DR: A novel method to effectively predict disease genes by exploiting, in the semi-supervised learning (SSL) scheme, data regarding both disease genes and disease gene neighbours via protein-protein interaction network is presented.

Journal ArticleDOI
TL;DR: The first human PDZ domain-ligand interaction network (PDZNet) is constructed together with binding motif sequences and interaction strengths of ligands, finding that interaction rewiring by sequence mutation frequently occurred throughout evolution, largely contributing to the growth of PDZNet.
Abstract: PDZ domain-mediated interactions have greatly expanded during metazoan evolution, becoming important for controlling signal flow via the assembly of multiple signaling components. The evolutionary history of PDZ domain-mediated interactions has never been explored at the molecular level. It is of great interest to understand how PDZ domain-ligand interactions emerged and how they become rewired during evolution. Here, we constructed the first human PDZ domain-ligand interaction network (PDZNet) together with binding motif sequences and interaction strengths of ligands. PDZNet includes 1,213 interactions between 97 human PDZ proteins and 591 ligands that connect most PDZ protein-mediated interactions (98%) in a large single network via shared ligands. We examined the rewiring of PDZ domain-ligand interactions throughout eukaryotic evolution by tracing changes in the C-terminal binding motif sequences of the PDZ ligands. We found that interaction rewiring by sequence mutation frequently occurred throughout evolution, largely contributing to the growth of PDZNet. The rewiring of PDZ domain-ligand interactions provided an effective means of functional innovations in nervous system development. Our findings provide empirical evidence for a network evolution model that highlights the rewiring of interactions as a mechanism for the development of new protein functions. PDZNet will be a valuable resource to further characterize the organization of the PDZ domain-mediated signaling proteome.

Journal ArticleDOI
TL;DR: This work constructed a "Core" Alzheimer's disease protein interaction network by human curation of the primary literature and identified the MAPK/ERK pathway and clathrin-mediated receptor endocytosis as key pathways in Alzheimer's Disease.
Abstract: Network models combined with gene expression studies have become useful tools for studying complex diseases like Alzheimer's disease. We constructed a “Core” Alzheimer's disease protein interaction network by human curation of the primary literature. The Core network consisted of 775 nodes and 2,204 interactions. To our knowledge, this is the most comprehensive and accurate protein interaction network yet constructed for Alzheimer's disease. An “Expanded” network was computationally constructed by adding additional proteins that interacted with Core network proteins, and consisted of 4,945 nodes and 26,064 interactions. We then mapped existing gene expression studies to the Core network. This combined data model identified the MAPK/ERK pathway and clathrin-mediated receptor endocytosis as key pathways in Alzheimer's disease. Important proteins in the MAPK/ERK pathway that interacted in the Core network formed a downregulated cluster of nodes, whereas clathrin and several clathrin accessory protei...

Journal ArticleDOI
TL;DR: These findings show that there are common relationships between gene properties and genetic interaction network topology in two evolutionarily distant species, which allows use of the extensively mapped S. cerevisiae Genetic interaction network as an orthology-independent reference to guide the study of more complex species.
Abstract: Background: Synthetic genetic interactions have recently been mapped on a genome scale in the budding yeast Saccharomyces cerevisiae, providing a functional view of the central processes of eukaryotic life. Currently, comprehensive genetic interaction networks have not been determined for other species, and we therefore sought to model conserved aspects of genetic interaction networks in order to enable the transfer of knowledge between species. Results: Using a combination of physiological and evolutionary properties of genes, we built models that successfully predicted the genetic interaction degree of S. cerevisiae genes. Importantly, a model trained on S. cerevisiae gene features and degree also accurately predicted interaction degree in the fission yeast Schizosaccharomyces pombe, suggesting that many of the predictive relationships discovered in S. cerevisiae also hold in this evolutionarily distant yeast. In both species, high single mutant fitness defect, protein disorder, pleiotropy, protein-protein interaction network degree, and low expression variation were significantly predictive of genetic interaction degree. A comparison of the predicted genetic interaction degrees of S. pombe genes to the degrees of S. cerevisiae orthologs revealed functional rewiring of specific biological processes that distinguish these two species. Finally, predicted differences in genetic interaction degree were independently supported by differences in co-expression relationships of the two species. Conclusions: Our findings show that there are common relationships between gene properties and genetic interaction network topology in two evolutionarily distant species. This conservation allows use of the extensively mapped S. cerevisiae genetic interaction network as an orthology-independent reference to guide the study of more complex species.

Journal ArticleDOI
TL;DR: It is found that genes whose encoded products act at the center of the network are more evolutionarily constrained than those acting at the network periphery, implying that the relationship between duplicability and centrality inverted at least twice during eukaryote evolution.
Abstract: Genes show a bewildering variation in their patterns of molecular evolution, as a result of the action of different levels and types of selective forces. The factors underlying this variation are, however, still poorly understood. In the last decade, the position of proteins in the protein–protein interaction network has been put forward as a determinant factor of the evolutionary rate and duplicability of their encoding genes. This conclusion, however, has been based on the analysis of the limited number of microbes and animals for which interactome-level data are available (essentially, Escherichia coli, yeast, worm, fly, and humans). Here, we study, for the first time, the relationship between the position of proteins in the high-density interactome of a plant (Arabidopsis thaliana) and the patterns of molecular evolution of their encoding genes. We found that genes whose encoded products act at the center of the network are more evolutionarily constrained than those acting at the network periphery. This trend remains significant when potential confounding factors (gene expression level and breadth, duplicability, function, and length of the encoded products) are controlled for. Even though the correlation between centrality measures and rates of evolution is generally weak, for some functional categories, it is comparable in strength to (or even stronger than) the correlation between evolutionary rates and expression levels or breadths. In addition, genes encoding interacting proteins in the network evolve at relatively similar rates. Finally, Arabidopsis proteins encoded by duplicated genes are more highly connected than those encoded by singleton genes. This observation is in agreement with the patterns observed in humans, but in contrast with those observed in E. coli, yeast, worm, and fly (whose duplicated genes tend to act at the periphery of the network), implying that the relationship between duplicability and centrality inverted at least twice during eukaryote evolution. Taken together, these results indicate that the structure of the A. thaliana network constrains the evolution of its components at multiple levels.

Journal ArticleDOI
TL;DR: The development of multi-scale modeling and simulation analysis will help to elucidate relevant central features of growth and cycle as well as to identify their system-level properties and contribute to shed more light on diseases in which an altered proliferation ability is observed, such as cancer.

Journal ArticleDOI
TL;DR: The combinatorial regulatory patterns of transcription factors and microRNAs on the protein interactome are revealed, and further evidence is provided to suggest the connection between gene regulatory network and protein interaction network.
Abstract: Background Gene regulatory networks control the global gene expression and the dynamics of protein output in living cells. In multicellular organisms, transcription factors and microRNAs are the major families of gene regulators. Recent studies have suggested that these two kinds of regulators share similar regulatory logics and participate in cooperative activities in the gene regulatory network; however, their combinational regulatory effects and preferences on the protein interaction network remain unclear.

Journal ArticleDOI
TL;DR: A significantly improved version of the KeyPathwayMiner software framework is introduced and the power of the new approach is demonstrated by comparing it to similar approaches with gene expression data previously used to study Huntington's disease.
Abstract: Systems biology has emerged over the last decade. Driven by the advances in sophisticated measurement technology the research community generated huge molecular biology data sets. These comprise rather static data on the interplay of biological entities, for instance protein–protein interaction network data, as well as quite dynamic data collected for studying the behavior of individual cells or tissues in accordance with changing environmental conditions, such as DNA microarrays or RNA sequencing. Here we bring the two different data types together in order to gain higher level knowledge. We introduce a significantly improved version of the KeyPathwayMiner software framework. Given a biological network modelled as a graph and a set of expression studies, KeyPathwayMiner efficiently finds and visualizes connected sub-networks where most components are expressed in most cases. It finds all maximal connected sub-networks where all nodes but k exceptions are expressed in all experimental studies but at most l exceptions. We demonstrate the power of the new approach by comparing it to similar approaches with gene expression data previously used to study Huntington's disease. In addition, we demonstrate KeyPathwayMiner's flexibility and applicability to non-array data by analyzing genome-scale DNA methylation profiles from colorectal tumor cancer patients. KeyPathwayMiner release 2 is available as a Cytoscape plugin and online at http://keypathwayminer.mpi-inf.mpg.de.

Journal ArticleDOI
23 Apr 2012-PLOS ONE
TL;DR: The HIV-1–human protein interaction database has been analyzed using association rule mining to identify a set of association rules both among the HIV- 1 proteins and among the human proteins, and use these rules for predicting new interactions.
Abstract: Identification of potential viral-host protein interactions is a vital and useful approach towards development of new drugs targeting those interactions. In recent days, computational tools are being utilized for predicting viral-host interactions. Recently a database containing records of experimentally validated interactions between a set of HIV-1 proteins and a set of human proteins has been published. The problem of predicting new interactions based on this database is usually posed as a classification problem. However, posing the problem as a classification one suffers from the lack of biologically validated negative interactions. Therefore it will be beneficial to use the existing database for predicting new viral-host interactions without the need of negative samples. Motivated by this, in this article, the HIV-1–human protein interaction database has been analyzed using association rule mining. The main objective is to identify a set of association rules both among the HIV-1 proteins and among the human proteins, and use these rules for predicting new interactions. In this regard, a novel association rule mining technique based on biclustering has been proposed for discovering frequent closed itemsets followed by the association rules from the adjacency matrix of the HIV-1–human interaction network. Novel HIV-1–human interactions have been predicted based on the discovered association rules and tested for biological significance. For validation of the predicted new interactions, gene ontology-based and pathway-based studies have been performed. These studies show that the human proteins which are predicted to interact with a particular viral protein share many common biological activities. Moreover, literature survey has been used for validation purpose to identify some predicted interactions that are already validated experimentally but not present in the database. Comparison with other prediction methods is also discussed.

Journal ArticleDOI
TL;DR: This review will examine how signaling pathways can be combined to form higher order protein interaction networks by using network graph theory, which has revealed unique aspects of the relationships between protein networks and complex biological phenotypes.
Abstract: The physical interaction of proteins is subject to intense investigation that has revealed that proteins are assembled into large densely connected networks. In this review, we will examine how signaling pathways can be combined to form higher order protein interaction networks. By using network graph theory, these interaction networks can be further analyzed for global organization, which has revealed unique aspects of the relationships between protein networks and complex biological phenotypes. Moreover, several studies have shown that the structure and dynamics of protein networks are disturbed in complex diseases such as cancer progression. These relationships suggest a novel paradigm for treatment of complex multigenic disease where the protein interaction network is the target of therapy more so than individual molecules within the network.

Book ChapterDOI
29 May 2012
TL;DR: Experiments on analyzing the disease phenotype-gene associations in Online Mendelian Inheritance in Man demonstrate that BiRW effectively improved disease gene prioritization over existing methods by ranking more known associations in the top 100 out of nearly 10,000 candidate genes.
Abstract: Random walk methods have been successfully applied to prioritizing disease causal genes. In this paper, we propose a bi-random walk algorithm (BiRW) based on a regularization framework for graph matching to globally prioritize disease genes for all phenotypes simultaneously. While previous methods perform random walk either on the protein-protein interaction network or the complete phenome-genome heterogenous network, BiRW performs random walk on the Kronecker product graph between the protein-protein interaction network and the phenotype similarity network. Three variations of BiRW that perform balanced or unbalanced bi-directional random walks are analyzed and compared with other random walk methods. Experiments on analyzing the disease phenotype-gene associations in Online Mendelian Inheritance in Man (OMIM) demonstrate that BiRW effectively improved disease gene prioritization over existing methods by ranking more known associations in the top 100 out of nearly 10,000 candidate genes.

Journal ArticleDOI
TL;DR: A new framework is described that uses experimental evidence on structural complexes, the atomic details of binding interfaces and evolutionary conservation to map the human protein interactome, and is highly modular and more functionally coherent compared with experimental interaction networks derived from multiple literature citations.
Abstract: Although the identification of protein interactions by highthroughput (HTP) methods progresses at a fast pace, ‘interactome’ data sets still suffer from high rates of false positives and low coverage. To map the human protein interactome, we describe a new framework that uses experimental evidence on structural complexes, the atomic details of binding interfaces and evolutionary conservation. The structurally inferred interaction network is highly modular and more functionally coherent compared with experimental interaction networks derived from multiple literature citations. Moreover, structurally inferred and high-confidence HTP networks complement each other well, allowing us to construct a merged network to generate testable hypotheses and provide valuable experimental leads.

Journal ArticleDOI
TL;DR: Peptide chips, pull down assays, SPOT synthesis and phage display experiments have allowed us to further characterize the specificity and promiscuity of proline-rich binding domains and to map their interaction network.

Journal ArticleDOI
TL;DR: This work proposes a novel single-source k-shortest paths based algorithm to address the underlying regulatory pathways within a gene interaction network to help understand the complex interactions and the regulation and flow of information within a system-of-interest.
Abstract: Motivation: Inferring the underlying regulatory pathways within a gene interaction network is a fundamental problem in Systems Biology to help understand the complex interactions and the regulation and flow of information within a system-of-interest. Given a weighted gene network and a gene in this network, the goal of an inference algorithm is to identify the potential regulatory pathways passing through this gene. Results: In a departure from previous approaches that largely rely on the random walk model, we propose a novel single-source k-shortest paths based algorithm to address this inference problem. An important element of our approach is to explicitly account for and enhance the diversity of paths discovered by our algorithm. The intuition here is that diversity in paths can help enrich different functions and thereby better position one to understand the underlying system-of-interest. Results on the yeast gene network demonstrate the utility of the proposed approach over extant state-of-the-art inference algorithms. Beyond utility, our algorithm achieves a significant speedup over these baselines. Availability: All data and codes are freely available upon request. Contact: srini@cse.ohio-state.edu Supplementary information: Supplementary data are available at Bioinformatics online.

Journal ArticleDOI
TL;DR: The efficacy of classification was effective in reducing the search space and increasing true positive rate and the final network of 541 interactions among 239 proteins is the first protein interaction network enriched in membrane transporters reported for any organism.
Abstract: High-throughput data are a double-edged sword; for the benefit of large amount of data, there is an associated cost of noise. To increase reliability and scalability of high-throughput protein interaction data generation, we tested the efficacy of classification to enrich potential protein-protein interactions (pPPIs). We applied this method to identify interactions among Arabidopsis membrane proteins enriched in transporters. We validated our method with multiple retests. Classification improved the quality of the ensuing interaction network and was effective in reducing the search space and increasing true positive rate. The final network of 541 interactions among 239 proteins (of which 179 are transporters) is the first protein interaction network enriched in membrane transporters reported for any organism. This network has similar topological attributes to other published protein interaction networks. It also extends and fills gaps in currently available biological networks in plants and allows building a number of hypotheses about processes and mechanisms involving signal-transduction and transport systems.