scispace - formally typeset
Search or ask a question

Showing papers on "Nanoparticle published in 2020"


Journal ArticleDOI
TL;DR: In this paper, several techniques related to the synthesis of ZnO nanostructures and their efficient performance in sensing are reviewed, such as functionalization of noble metal nanoparticles, doping of metals, inclusion of carbonaceous nanomaterials, using nanocomposites of different MO x, UV activation, and post-treatment method of high-energy irradiation on ZnOs, with their possible sensing mechanisms.

323 citations


Journal ArticleDOI
Mengqiu Huang1, Lei Wang1, Ke Pei1, Wenbin You1, Xuefeng Yu1, Zhengchen Wu1, Renchao Che1 
01 Apr 2020-Small
TL;DR: Carbonized Co@NC composites possess the following advantages: i) controllable dimension and morphology to balance the electromagnetic properties with evenly charged density distribution; ii) magnetic-carbon composites offer plenty of interfacial polarization and strong magnetic coupling network; iii) a MOF-derived dielectric carbon skeleton provides electronic transportation paths and enhances conductive dissipation
Abstract: Metal-organic framework (MOF) is highly desirable as a functional material owing to its low density, tunable pore size, and diversity of coordination formation, but limited by the poor dielectric properties. Herein, by controlling the solvent and mole ratio of cobalt/linker, multidimension-controllable MOF-derived nitrogen-doped carbon materials exhibit tunable morphology from sheet-, flower-, cube-, dodecahedron- to octahedron-like. Tunable electromagnetic parameters of Co@N-doped carbon composites (Co@NC) can be obtained and the initial MOF precursor determines the distribution of carbon framework and magnetic cobalt nanoparticles. Carbonized Co@NC composites possess the following advantages: i) controllable dimension and morphology to balance the electromagnetic properties with evenly charged density distribution; ii) magnetic-carbon composites offer plenty of interfacial polarization and strong magnetic coupling network; iii) a MOF-derived dielectric carbon skeleton provides electronic transportation paths and enhances conductive dissipation. Surface-mediated magnetic coupling reflects the stray magnetic flux field, which is corroborated by the off-axis electron holography and micro-magnetic simulation. Optimized octadecahedral Co@NC sample exhibits the best microwave absorption (MA) of -53.0 dB at the thickness of 1.8 mm and broad effective frequency from 11.4 to 17.6 GHz (Ku-band). These results pave the way to fabricate high-performance MA materials with balanced electromagnetic distribution and controlled morphology.

305 citations


Journal ArticleDOI
TL;DR: In this article, the authors have explored a stable and efficient synthesis protocol of particularly four metal oxide nanoparticles: titanium dioxide (TiO2), tin oxide (SnO 2), tungsten oxide (WO3), and zinc oxide (ZnO) for getting desired chemical composition, nanostructure, and surface properties.
Abstract: Metal oxide nanoparticles (MONPs) have enormous applications such as in optical devices, purification systems, biomedical systems, photocatalysis, photovoltaics etc. In this review, we have explored a stable and efficient synthesis protocol of particularly four MONPs: titanium dioxide (TiO2), tin oxide (SnO2), tungsten oxide (WO3) and zinc oxide (ZnO) for getting desired chemical composition, nanostructure, and surface properties. The selection of an efficient synthesis process is a key factor that significantly influences the efficacy of the MONPs. The chemical synthesis of nanoparticles (NPs) via sol–gel route is an effective method to produce high-quality MONPs in comparison to other physical and chemical methods. Sol–gel synthesis is one of the simple, fastest and economically less expensive method, and has its own advantages like low processing temperature, homogeneity of the produced material and formation of the complex structures or composite materials. We believe that this detailed review will provide an insight into sol–gel synthesis of MONPs along with their characterization and diverse applications.

268 citations


Journal ArticleDOI
TL;DR: Nanotechnology is an emerging field of science as discussed by the authors and the base of nanotechnology is nanoparticles. The size of nanoparticles ranges from 1 to 100 nm and the nanoparticles are classified into different class.
Abstract: Nanotechnology is an emerging field of science. The base of nanotechnology is nanoparticles. The size of nanoparticles ranges from 1 to 100 nm. The nanoparticles are classified into different class...

257 citations


Journal ArticleDOI
TL;DR: The properties, applications and toxicity of metal and non-metal-based nanoparticles are reviewed and exposure to nanoparticles could induce the production of reactive oxygen species (ROS), which is a predominant mechanism leading to toxicity.
Abstract: Nanotechnology has recently found applications in many fields such as consumer products, medicine and environment Nanoparticles display unique properties and vary widely according to their dimensions, morphology, composition, agglomeration and uniformity states Nanomaterials include carbon-based nanoparticles, metal-based nanoparticles, organic-based nanoparticles and composite-based nanoparticles The increasing production and use of nanoparticles result in higher exposure to humans and the environment, thus raising issues of toxicity Here we review the properties, applications and toxicity of metal and non-metal-based nanoparticles Nanoparticles are likely to be accumulated in sensitive organs such as heart, liver, spleen, kidney and brain after inhalation, ingestion and skin contact In vitro and in vivo studies indicate that exposure to nanoparticles could induce the production of reactive oxygen species (ROS), which is a predominant mechanism leading to toxicity Excessive production of ROS causes oxidative stress, inflammation and subsequent damage to proteins, cell membranes and DNA ROS production induced by nanoparticles is controlled by size, shape, surface, composition, solubility, aggregation and particle uptake The toxicity of a metallic nanomaterial may differ depending on the oxidation state, ligands, solubility and morphology, and on environmental and health conditions

243 citations



Journal ArticleDOI
TL;DR: In this paper, transition metal doped ZnO (TM-ZnO) nanoparticles with 3% dopant content were successfully prepared via a simple solvothermal route.

243 citations


Journal ArticleDOI
TL;DR: In this paper, the main target for these silver nanoparticles was not only to synthesize in nano range, but also require easy, eco-friendly and economical synthesis of the nanoparticles.
Abstract: Currently, synthesis of nanoparticles from several noble metals like palladium, tin, copper, silver and gold etc. has received more attention because of their unique properties as well as their application in different fields. Furthermore, silver nanoparticles play an important role in pharmaceutical industries because they function like antibacterial agents which carry less toxic effects. In case of industrial applications, silver particles (inkjet inks) having regular dispersions are helpful in making different electronic circuits. Over the period, various synthetic methods for the synthesis of silver nanoparticles were reported i.e. physical, chemical, and photochemical. However, most of the available techniques are expensive and not eco-friendly i.e. environmentally harmful. There are various factors such as the methods of synthesis, temperature, dispersing agent, surfactant etc. which greatly influence the quality and quantity of the synthesized nanoparticles and ultimately affect their properties. It is also pertinent to mention here that the main target for these silver nanoparticles was not only to synthesize in nano range, but also require easy, eco-friendly and economical synthesis of the nanoparticles. Therefore, this review mainly goes through the several methods of synthesis of nanoparticles which should be based on the green approach, and easy to be synthesized at low cost. In addition, we also discussed some approaches to fabricate silver-based nanoparticles, their enhanced properties and their different type of applications such as electrical conductivity, antibacterial, optical, photocatalytic properties.

243 citations


Journal ArticleDOI
TL;DR: In this article, the challenges involved in the preparation of composite feedstock filaments and printing issues during the printing of nano composites, short and continuous fiber composites are discussed, and detailed explanation is given about the analytical and numerical models used for simulating the FDM printing process and for estimating the mechanical properties of the printed parts.
Abstract: Fused Deposition Modeling (FDM) is a widely used additive manufacturing technology for fabrication of complex geometric parts using thermoplastic polymers. The quality issues and inferior properties of fabricated parts limited this process to manufacture parts for industrial level applications. Reinforcing the polymer with nanoparticles, short fibers or continuous fibers improve mechanical, thermal and electrical properties compared to the neat polymer. Several works have been carried out since last two decades to print quality products through FDM by using composite materials. The success of expanding this technique to industrial applications depends on the preparation of printable composite feedstock filament and printing without defects. This article reviews the challenges involved in the preparation of composite feedstock filaments and printing issues during the printing of nano composites, short and continuous fiber composites. The printing process of various thermoplastic composites ranging from amorphous to crystalline polymers is discussed. Also, detailed explanation is given about the analytical and numerical models used for simulating the FDM printing process and for estimating the mechanical properties of the printed parts. This critical review mainly helps the young researchers working in the area of processing of composite materials via 3D printing.

241 citations


Journal ArticleDOI
TL;DR: Both the aqueous extract and ZnO.NPs showed a remarkable selective cytotoxicity against the two examined cancer cell lines.
Abstract: In recent years, there is a growing interest towards the green synthesis of metal nanoparticles, particularly from plants; however, yet no published study on the synthesis of ZnO.NPs using the Deverra tortuosa extract. Through this study, zinc oxide nanoparticles (ZnO.NPs) have been synthesized based on using the environmentally benign extract of the aerial parts of D. tortuosa as a reducing and capping agent. ZnO.NPs synthesis was confirmed using UV-Visible (UV-Vis) spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD) and High Resolution-Transmission Electron Microscope (HR-TEM). The qualitative and quantitative analyses of plant extract were done. The potential anticancer activity was in vitro investigated against two cancer cell lines (human colon adenocarcinoma "Caco-2" and human lung adenocarcinoma "A549") compared to their activities on the human lung fibroblast cell line (WI38) using the MTT assay. Both the aqueous extract and ZnO.NPs showed a remarkable selective cytotoxicity against the two examined cancer cell lines.

239 citations


Journal ArticleDOI
TL;DR: In this article, a catalyst system of NiSe2 nanoparticle/NiO nanosheet catalyst exhibited efficient synergism for energy and environmental-relevant urea-assisted water electrolysis reactions.
Abstract: Herein, we highlighted that a catalyst system of NiSe2 nanoparticle/NiO nanosheet catalyst exhibited efficient synergism for energy and environmental-relevant urea-assisted water electrolysis reactions. The spectral study and microscopic analysis demonstrated the formation of NiSe2 nanoparticle/NiO nanosheet heterostructure and efficient Ni O bond and Ni Se bond synergism. Owing to various factors such as the strong synergetic coupling effects between NiSe2 nanoparticle and NiO nanosheet, unique structure features, increased active sites and amount of intrinsic Ni3+ ions, efficient synergism was found on the NiSe2 Nanoparticle/NiO nanosheet for urea-assisted water electrolysis by comparing with the NiSe2 Nanoparticle and NiO nanosheet alone. It required a cell voltage of 1.39 V, about 210 mV less than that of water electrolysis, confirming the less energy consumption during the electrolysis. Notably, it also shows remarkably superior long-term durability. The current work may extend the nanoparticle-nanosheet catalysts system for simultaneous wastewater treatment and clean energy production.

Journal ArticleDOI
Xiaopei Hu1, Yuting Zhang1, Tingting Ding1, Jiang Liu1, Hang Zhao1 
TL;DR: This article systematically review the methods of synthesis, the modification and characterization techniques of AuNPs, medical applications, and some biological activities of Au NPs, to provide a reference for future studies.
Abstract: Nanotechnology has become a trending area in science and has made great advances with the development of functional, engineered nanoparticles. Various metal nanoparticles have been widely exploited for a wide range of medical applications. Among them, gold nanoparticles (AuNPs) are widely reported to guide an impressive resurgence and are highly remarkable. AuNPs, with their multiple, unique functional properties, and easy of synthesis, have attracted extensive attention. Their intrinsic features (optics, electronics, and physicochemical characteristics) can be altered by changing the characterization of the nanoparticles, such as shape, size and aspect ratio. They can be applied to a wide range of medical applications, including drug and gene delivery, photothermal therapy (PTT), photodynamic therapy (PDT) and radiation therapy (RT), diagnosis, X-ray imaging, computed tomography (CT) and other biological activities. However, to the best of our knowledge, there is no comprehensive review that summarized the applications of AuNPs in the medical field. Therefore, in this article we systematically review the methods of synthesis, the modification and characterization techniques of AuNPs, medical applications, and some biological activities of AuNPs, to provide a reference for future studies.

Journal ArticleDOI
27 Aug 2020-Sensors
TL;DR: It is shown that doping leads not only to a decrease in the concentration of manganese in model solutions, but also to an increase in the efficiency of adsorption from 11% to 75%.
Abstract: The main purpose of this work is to study the effectiveness of using FeCeOx nanocomposites doped with Nb2O5 for the purification of aqueous solutions from manganese. X-ray diffraction, energy–dispersive analysis, scanning electron microscopy, vibrational magnetic spectroscopy, and mossbauer spectroscopy were used as research methods. It is shown that an increase in the dopant concentration leads to the transformation of the shape of nanoparticles from spherical to cubic and rhombic, followed by an increase in the size of the nanoparticles. The spherical shape of the nanoparticles is characteristic of a structure consisting of a mixture of two phases of hematite (Fe2O3) and cerium oxide CeO2. The cubic shape of nanoparticles is typical for spinel-type FeNbO4 structures, the phase contribution of which increases with increasing dopant concentration. It is shown that doping leads not only to a decrease in the concentration of manganese in model solutions, but also to an increase in the efficiency of adsorption from 11% to 75%.

Journal ArticleDOI
TL;DR: In this article, a magnetically recyclable solid catalyst was developed for the transformation of low-cost oils to biodiesel via simultaneous transesterification and esterification in an efficient and environmentally benign manner.

Journal ArticleDOI
TL;DR: In this paper, a 3D fiber-network-reinforced composite solid electrolyte (CSE) with a mechanically robust, porous polyimide (PI) film as a host, Li6.75La3Zr1.75Ta0.25O12 nanoparticles and polyvinylidene fluoride (PVDF) polymer matrix with bis-trifluoromethanesulfonimide lithium salt as electrolyte filler, is designed and fabricated.

Journal ArticleDOI
TL;DR: In this paper, the polydopamine modified barium titanate (BaTiO3, BT) nanoparticles have been anchored onto the surface of electrospun poly (vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) fibers to fabricate hierarchical micro-structured membrane, which not only effectively avoids the agglomeration of nanofillers but also enhances the density of interfaces in the nanocomposites.

Journal ArticleDOI
TL;DR: This review focuses on the detailed profile of NPs, its impact on biology and medicine, and their commercialization prospects.
Abstract: Nanotechnology is an emerging technology that deals with nanosized particles possessing crucial research roles and application. Disciplines like chemistry, biology, physics, engineering, materials science, and health sciences provide an accumulated knowledge of nanotechnology. Nonetheless, it has vast submissions precisely in biology, electronics, and medicine. Aimed at drug delivery system, nanoparticles are based on the mechanism of entrapment of the drugs or biomolecules into the interior structure of the particles; another mechanism could be that the drugs or the biomolecules can be absorbed onto the exterior surfaces of the particles. Currently, nanoparticles (NPs) are used in the delivery of drugs, proteins, genes, vaccines, polypeptides, nucleic acids, etc. In recent years, various applications of the drug delivery system via NPs have encountered an enormous position sector like pharmaceutical, medical, biological, and others. Considering the impact of NPs in drug delivery systems, this review focuses on the detailed profile of NPs, its impact on biology and medicine, and their commercialization prospects.

Journal ArticleDOI
TL;DR: In this article, surface-loaded cobalt/biochar (Co-GMC-900) was successfully prepared for the first time by carbonizing Co-impregnated goat manure waste.

Journal ArticleDOI
Desheng Liu1, Minna Li1, Xiaochun Li1, Fujun Ren1, Ping Sun1, Lincheng Zhou1 
TL;DR: In this paper, a facile and straight strategy to synthesize a highly efficient and recyclable heterogeneous catalyst through pyrolysis-oxidation of core-shell Zn/Co metal organic frameworks (MOFs) was reported.


Journal ArticleDOI
TL;DR: Recent advances in the polymer-guided self-assembly of inorganic nanoparticles in both bulk thin films and solution are summarized, with an emphasis on the role of polymers in the assembly process and functions of resulting nanostructures.
Abstract: The self-assembly of inorganic nanoparticles is of great importance in realizing their enormous potentials for broad applications due to the advanced collective properties of nanoparticle ensembles. Various molecular ligands (e.g., small molecules, DNAs, proteins, and polymers) have been used to assist the organization of inorganic nanoparticles into functional structures at different hierarchical levels. Among others, polymers are particularly attractive for use in nanoparticle assembly, because of the complex architectures and rich functionalities of assembled structures enabled by polymers. Polymer-guided assembly of nanoparticles has emerged as a powerful route to fabricate functional materials with desired mechanical, optical, electronic or magnetic properties for a broad range of applications such as sensing, nanomedicine, catalysis, energy storage/conversion, data storage, electronics and photonics. In this review article, we summarize recent advances in the polymer-guided self-assembly of inorganic nanoparticles in both bulk thin films and solution, with an emphasis on the role of polymers in the assembly process and functions of resulting nanostructures. Precise control over the location/arrangement, interparticle interaction, and packing of inorganic nanoparticles at various scales are highlighted.

Journal ArticleDOI
TL;DR: A novel magnetic nano-fibers as a rapid test sensor for detecting of mercury(II) and lead(II), and results show reduction in PL intensity by enhancing of toxic heavy metal ions.

Journal ArticleDOI
TL;DR: A review of established laser‐based methodologies of oxide nanoparticles which include pure oxidic phases, as well as unconventional structures like defective or doped oxides, non‐equilibrium compounds, metal‐oxide core–shells and other anisotropic morphologies is presented.
Abstract: Although oxide nanoparticles are ubiquitous in science and technology, a multitude of compositions, phases, structures, and doping levels exist, each one requiring a variety of conditions for their synthesis and modification. Besides, experimental procedures are frequently dominated by high temperatures or pressures and by chemical contaminants or waste. In recent years, laser synthesis of colloids emerged as a versatile approach to access a library of clean oxide nanoparticles relying on only four main strategies running at room temperature and ambient pressure: laser ablation in liquid, laser fragmentation in liquid, laser melting in liquid and laser defect-engineering in liquid. Here, established laser-based methodologies are reviewed through the presentation of a panorama of oxide nanoparticles which include pure oxidic phases, as well as unconventional structures like defective or doped oxides, non-equilibrium compounds, metal-oxide core-shells and other anisotropic morphologies. So far, these materials showed several useful properties that are discussed with special emphasis on catalytic, biomedical and optical application. Yet, given the endless number of mixed compounds accessible by the laser-assisted methodologies, there is still a lot of room to expand the library of nano-crystals and to refine the control over products as well as to improve the understanding of the whole process of nanoparticle formation. To that end, this review aims to identify the perspectives and unique opportunities of laser-based synthesis and processing of colloids for future studies of oxide nanomaterial-oriented sciences.

Journal ArticleDOI
TL;DR: This work reports, for the first time, the scalable preparation of a porous nickel foam-templated superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles, which exhibits excellent trifunctional electrocatalytic activities for OER, HER, and ORR, achieving great performances in water splitting and Zn-air batteries.
Abstract: Superstructures have attracted great interest owing to their potential applications. Herein, we report the first scalable preparation of a porous nickel-foam-templated superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles. Uniform two-dimensional (2D) Co-metal organic framework (MOF) nanosheets (Co-MNS) grow on nickel foam, followed by a MOF-mediated tandem (carbonization/phosphidation) pyrolysis. The resulting superstructure has a porous 3D interconnected network with well-arranged 2D carbon nanosheets on it, in which ultrafine cobalt phosphide nanoparticles are tightly immobilized. A single piece of this superstructure can be directly used as a self-supported electrode for electrocatalysis without any binders. This "one-piece" porous superstructure with excellent mass transport and electron transport properties, and catalytically active cobalt phosphide nanoparticles with ultrasmall size (3-4 nm), shows excellent trifunctional electrocatalytic activities for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and oxygen reduction reaction (ORR), achieving great performances in water splitting and Zn-air batteries.

Journal ArticleDOI
TL;DR: A meta-analysis on the significance of either nano or tiny particles exposed to thermophoretic force owing to temperature gradient during the dynamics of liquid substances is deliberated upon in this paper.

Journal ArticleDOI
TL;DR: The focus is laid on the biosynthesis method, which makes the cerium oxide nanoparticle less toxic and compatible with the living tissues, which helps them to find their path as an anticancer, anti-inflammatory and antibacterial agents.
Abstract: Nanotechnology is the branch of science which deals with particles ranging between 1–100 nm. These particles are called nanoparticles, and they exhibit unique electronic, optical, magnetic, and mechanical properties, which make them different from the bulk material. These properties of nanomaterials help them to find a variety of applications in the biomedical, agricultural, and environmental domains. Cerium oxide nanoparticles have gained a lot of attention as a potential future candidate for ending various kinds of problems by exhibiting redox activity, free radical scavenging property, biofilm inhibition, etc. Synthesis of these nanoparticles can be performed very easily by utilizing chemical or biological methods. But in this review, the focus is laid on the biosynthesis of these nanoparticles; as the biosynthesis method makes the cerium oxide nanoparticle less toxic and compatible with the living tissues, which helps them to find their path as an anticancer, anti-inflammatory and antibacterial agents. The pre-existing reviews have only focused on details relating to properties/applications/synthesis; whereas this review draws attention towards all the aspects in single review covering all the details in depth such as biosynthesis methods and its effect on the living tissues, along with properties, biomedical applications (diagnostic and therapeutic) and future outlook of the cerium oxide nanoparticle.

Journal ArticleDOI
TL;DR: Due to the cytotoxicity of Ag/Au/Pd NPs, the conclusion and future remarks emphasize the need for further research to minimize the toxicity of NPs in the bio-medicinal field.
Abstract: Herein, the role of metal-based nanoparticles (NPs) in biomedical analysis and the treatment of critical deceases been highlighted. In the world of nanotechnology, noble elements such as the gold/silver/palladium (Au/Ag/Pd) NPs are the most promising emerging trend to design bioengineering materials that could to be employed as modern diagnostic tools and devices to combat serious diseases. NPs are considered a powerful and advanced chemical tool to diagnose and to cure critical ailments such as HIV, cancer, and other types of infectious illnesses. The treatment of cancer is the most significant application of nanotechnology which is based on premature tumor detection and analysis of cancer cells through Nano-devices. The fascinating characteristic properties of NPs-such as high surface area, high surface Plasmon resonance, multi-functionalization, highly stable nature, and easy processing-make them more prolific for nanotechnology. In this review article, the multifunctional roles of Au/Ag/Pd NPs in the field of medical science, the physicochemical toxicity dependent properties, and the interaction mechanism is highlighted. Due to the cytotoxicity of Ag/Au/Pd NPs, the conclusion and future remarks emphasize the need for further research to minimize the toxicity of NPs in the bio-medicinal field.

Journal ArticleDOI
TL;DR: A green protocol for in situ fabrication of ultrafine Pd nanoparticles on chitosan-encapsulated Fe3O4/SiO2-NH2- NH2 nanoparticles, without the use of any toxic reducing agents, is described.

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the CoFe2O4 nanoparticles doped with various elements and their applications in various fields, including permanent magnets, magnetic recorders in high-density and micro-wave devices, and magnetic fluids.

Journal ArticleDOI
TL;DR: In this paper, ZnO nanoparticles were synthesized by the hydrothermal method and incorporated with diverse amounts of the nonmetal element sulfur (0.5, 0.8, 1.1, 2.3, 3.2, 6.8.
Abstract: Zinc oxide (ZnO) nanoparticles were synthesized by the hydrothermal method and incorporated with diverse amounts of the nonmetal element sulfur (0.5, 0.8, 1.1, 1.3, 2.1, 2.5, 3.2, 6.8, 7.8, 11.9, 1...