scispace - formally typeset
Search or ask a question

Showing papers on "Photoinhibition published in 2013"


Book ChapterDOI
TL;DR: In this chapter, it is shown that the evidence behind the chemistry-based models and the photophysically oriented models can be brought together to build a mechanism that confirms with all types of experimental data.
Abstract: Photoinhibition of Photosystem II (PSII) is the light-induced loss of PSII electron-transfer activity. Although photoinhibition has been studied for a long time, there is no consensus about its mechanism. On one hand, production of singlet oxygen ((1)O(2)) by PSII has promoted models in which this reactive oxygen species (ROS) is considered to act as the agent of photoinhibitory damage. These chemistry-based models have often not taken into account the photophysical features of photoinhibition-like light response and action spectrum. On the other hand, models that reproduce these basic photophysical features of the reaction have not considered the importance of data about ROS. In this chapter, it is shown that the evidence behind the chemistry-based models and the photophysically oriented models can be brought together to build a mechanism that confirms with all types of experimental data. A working hypothesis is proposed, starting with inhibition of the manganese complex by light. Inability of the manganese complex to reduce the primary donor promotes recombination between the oxidized primary donor and Q(A), the first stable quinone acceptor of PSII. (1)O(2) production due to this recombination may inhibit protein synthesis or spread the photoinhibitory damage to another PSII center. The production of (1)O(2) is transient because loss of activity of the oxygen-evolving complex induces an increase in the redox potential of Q(A), which lowers (1)O(2) production.

429 citations


Journal ArticleDOI
TL;DR: Biochemical and structural analysis of isolated thylakoid membranes by electron microscopy indicates a distinctly different response at the level of PSII and LHCII upon plant acclimation.

214 citations


Journal ArticleDOI
TL;DR: It is proposed that photoinhibited leaves characterized for foliar carbohydrate levels were invariably found to possess high levels of sugars and starch and should be placed in the context of whole-plant source–sink regulation of photosynthesis.
Abstract: Photoinhibition in leaves in response to high and/or excess light, consisting of a decrease in photosynthesis and/or photosynthetic efficiency, is frequently equated to photodamage and often invoked as being responsible for decreased plant growth and productivity. However, a review of the literature reveals that photoinhibited leaves characterized for foliar carbohydrate levels were invariably found to possess high levels of sugars and starch. We propose that photoinhibition should be placed in the context of whole-plant source–sink regulation of photosynthesis. Photoinhibition may represent downregulation of the photosynthetic apparatus in response to excess light when (1) more sugar is produced in leaves than can be utilized by the rest of the plant and/or (2) more light energy is harvested than can be utilized by the chloroplast for the fixation of carbon dioxide into sugars.

185 citations


Journal ArticleDOI
TL;DR: The recent progress in identifying the kinases, phosphatases and proteases, and in understanding their involvement in the maintenance of thylakoid structure and the quality control of proteins by PSII repair cycle during photoinhibition is described.

142 citations


Journal ArticleDOI
04 Oct 2013-PLOS ONE
TL;DR: Results demonstrate that populations of Z. muelleri in south-eastern Australia are sensitive to small chronic temperature increases and light decreases that are predicted under future climate change scenarios.
Abstract: Understanding how multiple environmental stressors interact to affect seagrass health (measured as morphological and physiological responses) is important for responding to global declines in seagrass populations. We investigated the interactive effects of temperature stress (24, 27, 30 and 32°C) and shading stress (75, 50, 25 and 0% shade treatments) on the seagrass Zostera muelleri over a 3-month period in laboratory mesocosms. Z. muelleri is widely distributed throughout the temperate and tropical waters of south and east coasts of Australia, and is regarded as a regionally significant species. Optimal growth was observed at 27°C, whereas rapid loss of living shoots and leaf mass occurred at 32°C. We found no difference in the concentration of photosynthetic pigments among temperature treatments by the end of the experiment; however, up-regulation of photoprotective pigments was observed at 30°C. Greater levels of shade resulting in high photochemical efficiencies, while elevated irradiance suppressed effective quantum yield (ΔF/FM'). Chlorophyll fluorescence fast induction curves (FIC) revealed that the J step amplitude was significantly higher in the 0% shade treatment after 8 weeks, indicating a closure of PSII reaction centres, which likely contributed to the decline in ΔF/FM' and photoinhibition under higher irradiance. Effective quantum yield of PSII (ΔF/FM') declined steadily in 32°C treatments, indicating thermal damage. Higher temperatures (30°C) resulted in reduced above-ground biomass ratio and smaller leaves, while reduced light led to a reduction in leaf and shoot density, above-ground biomass ratio, shoot biomass and an increase in leaf senescence. Surprisingly, light and temperature had few interactive effects on seagrass health, even though these two stressors had strong effects on seagrass health when tested in isolation. In summary, these results demonstrate that populations of Z. muelleri in south-eastern Australia are sensitive to small chronic temperature increases and light decreases that are predicted under future climate change scenarios.

134 citations


Journal ArticleDOI
TL;DR: The results emphasize strong evidence for the existence of a plastid-to-nucleus retrograde signaling mechanism in an organism with plastids that derived from secondary endosymbiosis and underline the central role of the redox state of the PQ pool in the light acclimation of diatoms.
Abstract: In diatoms, the process of energy-dependent chlorophyll fluorescence quenching (qE) has an important role in photoprotection. Three components are essential for qE: (1) the light-dependent generation of a transthylakoidal proton gradient; (2) the deepoxidation of the xanthophyll diadinoxanthin (Dd) into diatoxanthin (Dt); and (3) specific nucleus-encoded antenna proteins, called Light Harvesting Complex Protein X (LHCX). We used the model diatom Phaeodactylum tricornutum to investigate the concerted light acclimation response of the qE key components LHCX, proton gradient, and xanthophyll cycle pigments (Dd+Dt) and to identify the intracellular light-responsive trigger. At high-light exposure, the up-regulation of three of the LHCX genes and the de novo synthesis of Dd+Dt led to a pronounced rise of qE. By inhibiting either the conversion of Dd to Dt or the translation of LHCX genes, qE amplification was abolished and the diatom cells suffered from stronger photoinhibition. Artificial modification of the redox state of the plastoquinone (PQ) pool via 3-(3,4-dichlorophenyl)-1,1-dimethylurea and 5-dibromo-6-isopropyl-3-methyl-1,4-benzoquinone resulted in a disturbance of Dd+Dt synthesis in an opposite way. Moreover, we could increase the transcription of two of the four LHCX genes under low-light conditions by reducing the PQ pool using 5-dibromo-6-isopropyl-3-methyl-1,4-benzoquinone. Altogether, our results underline the central role of the redox state of the PQ pool in the light acclimation of diatoms. Additionally, they emphasize strong evidence for the existence of a plastid-to-nucleus retrograde signaling mechanism in an organism with plastids that derived from secondary endosymbiosis.

125 citations


Journal ArticleDOI
TL;DR: The results demonstrate for the first time that PSI is the major target of Mn toxicity within the photosynthetic apparatus of Arabidopsis plants.
Abstract: The effects of exposure to increasing manganese concentrations (50-1500 µM) from the start of the experiment on the functional performance of photosystem II (PSII) and photosystem I (PSI) and photosynthetic apparatus composition of Arabidopsis thaliana were compared. In agreement with earlier studies, excess Mn caused minimal changes in the PSII photochemical efficiency measured as F(v)/F(m), although the characteristic peak temperature of the S(2/3)Q(B) (-) charge recombinations was shifted to lower temperatures at the highest Mn concentration. SDS-PAGE and immunoblot analyses also did not exhibit any significant change in the relative abundance of PSII-associated polypeptides: PSII reaction centre protein D1, Lhcb1 (major light-harvesting protein of LHCII complex), and PsbO (OEC33, a 33 kDa protein of the oxygen-evolving complex). In addition, the abundance of Rubisco also did not change with Mn treatments. However, plants grown under excess Mn exhibited increased susceptibility to PSII photoinhibition. In contrast, in vivo measurements of the redox transients of PSI reaction centre (P700) showed a considerable gradual decrease in the extent of P700 photooxidation (P700(+)) under increased Mn concentrations compared to control. This was accompanied by a slower rate of P700(+) re-reduction indicating a downregulation of the PSI-dependent cyclic electron flow. The abundance of PSI reaction centre polypeptides (PsaA and PsaB) in plants under the highest Mn concentration was also significantly lower compared to the control. The results demonstrate for the first time that PSI is the major target of Mn toxicity within the photosynthetic apparatus of Arabidopsis plants. The possible involvement mechanisms of Mn toxicity targeting specifically PSI are discussed.

121 citations


Journal ArticleDOI
24 May 2013-PLOS ONE
TL;DR: The fragment from QA to PQH2 is the most heat sensitive in the electron transport chain between PSII and PSI in sweet sorghum, which can reduce the possibility of PSI photoinhibition under heat stress.
Abstract: Plant photosynthesis and photosystem II (PSII) are susceptible to high temperature. However, photosynthetic electron transport process under heat stress remains unclear. To reveal this issue, chlorophyll a fluorescence and modulated 820 nm reflection were simultaneously detected in sweet sorghum. At 43 degrees C, J step in the chlorophyll a fluorescence transient was significantly elevated, suggesting that electron transport beyond primary quinone of PSII (Q(A)) (primary quinone electron acceptor of PSII) was inhibited. PSI (Photosystem I) photochemical capacity was not influenced even under severe heat stress at 48 degrees C. Thus, PSI oxidation was prolonged and PSI re-reduction did not reach normal level. The inhibition of electron transport between PSII and PSI can reduce the possibility of PSI photoinhibition under heat stress. PSII function recovered entirely one day after heat stress at 43 degrees C, implying that sweet sorghum has certain self-remediation capacity. When the temperature reached 48 degrees C, the maximum quantum yield for primary photochemistry and the electron transport from PSII donor side were remarkably decreased, which greatly limited the electron flow to PSI, and PSI re-reduction suspended. The efficiency of an electron transferred from the intersystem electron carrier (plastoquinol, PQH(2)) to the end electron acceptors at the PSI acceptor side increased significantly at 48 degrees C, and the reason was the greater inhibition of electron transport before PQH(2). Thus, the fragment from Q(A) to PQH(2) is the most heat sensitive in the electron transport chain between PSII and PSI in sweet sorghum.

116 citations


Journal ArticleDOI
TL;DR: It is reported that zeaxanthin, an NPQ enhancer, is far more active on LHCSR- dependent NPQ than on the PSBS-dependent NPQ, and biochemical evidence that native LH CSR protein binds zeaxAnthin upon excess light stress is provided.
Abstract: Nonphotochemical quenching (NPQ) dissipates excess energy to protect the photosynthetic apparatus from excess light. The moss Physcomitrella patens exhibits strong NPQ by both algal-type light-harvesting complex stress-related (LHCSR)-dependent and plant-type S subunit of Photosystem II (PSBS)-dependent mechanisms. In this work, we studied the dependence of NPQ reactions on zeaxanthin, which is synthesized under light stress by violaxanthin deepoxidase (VDE) from preexisting violaxanthin. We produced vde knockout (KO) plants and showed they underwent a dramatic reduction in thermal dissipation ability and enhanced photoinhibition in excess light conditions. Multiple mutants (vde lhcsr KO and vde psbs KO) showed that zeaxanthin had a major influence on LHCSR-dependent NPQ, in contrast with previous reports in Chlamydomonas reinhardtii. The PSBS-dependent component of quenching was less dependent on zeaxanthin, despite the near-complete violaxanthin to zeaxanthin exchange in LHC proteins. Consistent with this, we provide biochemical evidence that native LHCSR protein binds zeaxanthin upon excess light stress. These findings suggest that zeaxanthin played an important role in the adaptation of modern plants to the enhanced levels of oxygen and excess light intensity of land environments.

112 citations


Journal ArticleDOI
16 Apr 2013-PLOS ONE
TL;DR: Improved H2 production efficiency was achieved at increased solar flux densities and high cell densities which are best suited for microalgae production as light is ideally the limiting factor and the overall improved photon-to-H2 conversion efficiency is suggested.
Abstract: Single cell green algae (microalgae) are rapidly emerging as a platform for the production of sustainable fuels. Solar-driven H2 production from H2O theoretically provides the highest-efficiency route to fuel production in microalgae. This is because the H2-producing hydrogenase (HYDA) is directly coupled to the photosynthetic electron transport chain, thereby eliminating downstream energetic losses associated with the synthesis of carbohydrate and oils (feedstocks for methane, ethanol and oil-based fuels). Here we report the simultaneous knock-down of three light-harvesting complex proteins (LHCMB1, 2 and 3) in the high H2-producing Chlamydomonas reinhardtii mutant Stm6Glc4 using an RNAi triple knock-down strategy. The resultant Stm6Glc4L01 mutant exhibited a light green phenotype, reduced expression of LHCBM1 (20.6% ±0.27%), LHCBM2 (81.2% ±0.037%) and LHCBM3 (41.4% ±0.05%) compared to 100% control levels, and improved light to H2 (180%) and biomass (165%) conversion efficiencies. The improved H2 production efficiency was achieved at increased solar flux densities (450 instead of ∼100 µE m−2 s−1) and high cell densities which are best suited for microalgae production as light is ideally the limiting factor. Our data suggests that the overall improved photon-to-H2 conversion efficiency is due to: 1) reduced loss of absorbed energy by non-photochemical quenching (fluorescence and heat losses) near the photobioreactor surface; 2) improved light distribution in the reactor; 3) reduced photoinhibition; 4) early onset of HYDA expression and 5) reduction of O2-induced inhibition of HYDA. The Stm6Glc4L01 phenotype therefore provides important insights for the development of high-efficiency photobiological H2 production systems.

108 citations


Journal ArticleDOI
TL;DR: At least in the earlier stages, most of the electrons delivered to the hydrogenase originate from water oxidation by PSII, a faster onset of anaerobiosis preserves PSII from irreversible photoinhibition, and mutants with enhanced respiratory activity should be considered for better photobiological H2 production.
Abstract: Photobiological H2 production is an attractive option for renewable solar fuels Sulfur-deprived cells of Chlamydomonas reinhardtii have been shown to produce hydrogen with the highest efficiency among photobiological systems We have investigated the photosynthetic reactions during sulfur deprivation and H2 production in the wild-type and state transition mutant 6 (Stm6) mutant of Chlamydomonas reinhardtii The incubation period (130 h) was dissected into different phases, and changes in the amount and functional status of photosystem II (PSII) were investigated in vivo by electron paramagnetic resonance spectroscopy and variable fluorescence measurements In the wild type it was found that the amount of PSII is decreased to 25% of the original level; the electron transport from PSII was completely blocked during the anaerobic phase preceding H2 formation This block was released during the H2 production phase, indicating that the hydrogenase withdraws electrons from the plastoquinone pool This partly removes the block in PSII electron transport, thereby permitting electron flow from water oxidation to hydrogenase In the Stm6 mutant, which has higher respiration and H2 evolution than the wild type, PSII was analogously but much less affected The addition of the PSII inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea revealed that ∼80% of the H2 production was inhibited in both strains We conclude that (i) at least in the earlier stages, most of the electrons delivered to the hydrogenase originate from water oxidation by PSII, (ii) a faster onset of anaerobiosis preserves PSII from irreversible photoinhibition, and (iii) mutants with enhanced respiratory activity should be considered for better photobiological H2 production

Journal ArticleDOI
TL;DR: This study is the first to report a phenotypic difference in growth between terminal oxidase mutants and wild-type cells and highlights the need to examine mutant phenotypes under a range of conditions, demonstrating the strong selective pressure to maintain linked photosynthetic and respiratory electron chains within the thylakoid membrane.
Abstract: Cyanobacteria perform photosynthesis and respiration in the thylakoid membrane, suggesting that the two processes are interlinked. However, the role of the respiratory electron transfer chain under natural environmental conditions has not been established. Through targeted gene disruption, mutants of Synechocystis sp. PCC 6803 were generated that lacked combinations of the three terminal oxidases: the thylakoid membrane-localized cytochrome c oxidase (COX) and quinol oxidase (Cyd) and the cytoplasmic membrane-localized alternative respiratory terminal oxidase. All strains demonstrated similar growth under continuous moderate or high light or 12-h moderate-light/dark square-wave cycles. However, under 12-h high-light/dark square-wave cycles, the COX/Cyd mutant displayed impaired growth and was completely photobleached after approximately 2 d. In contrast, use of sinusoidal light/dark cycles to simulate natural diurnal conditions resulted in little photobleaching, although growth was slower. Under high-light/dark square-wave cycles, the COX/Cyd mutant suffered a significant loss of photosynthetic efficiency during dark periods, a greater level of oxidative stress, and reduced glycogen degradation compared with the wild type. The mutant was susceptible to photoinhibition under pulsing but not constant light. These findings confirm a role for thylakoid-localized terminal oxidases in efficient dark respiration, reduction of oxidative stress, and accommodation of sudden light changes, demonstrating the strong selective pressure to maintain linked photosynthetic and respiratory electron chains within the thylakoid membrane. To our knowledge, this study is the first to report a phenotypic difference in growth between terminal oxidase mutants and wild-type cells and highlights the need to examine mutant phenotypes under a range of conditions.

Journal ArticleDOI
TL;DR: Results indicate that BR accelerates the recovery of photosynthetic apparatus at HL by activation of enzymes in Calvin cycle and increasing the antioxidant capacity, which in turn mitigate the photooxidative stress and the inhibition of plant growth during the recovery.
Abstract: The aim of this study was to examine the role of brassinosteroids (BRs) in protecting the photosynthetic apparatus from cold-induced damage in cucumber (Cucumis sativus) plants Recovery at both high light (HL) and low light (LL) after a cooling at 10/7°C induced irreversible inhibition of CO2 assimilation, photoinhibition at photosystem I (PSI) and inhibition of enzyme activities of Calvin cycle and ascorbate (AsA)-reduced glutathione (GSH) cycle, followed by accumulation of H2 O2 and malondialdehyde However, cold-induced photoinhibition at PSII was fully recovered at LL but not at HL Meanwhile, recovery at HL increased electron flux to O2 -dependent alternative pathway [Ja(O2 -dependent)] Foliar application of 24-epibrassinolide (EBR) accelerated recovery from photoinhibition of PSII but not of PSI EBR also significantly increased CO2 assimilation, activity of Calvin cycle enzymes and electron flux to carbon reduction [Je(PCR)], with a concomitant decrease in Ja(O2 -dependent); meanwhile EBR increased the activity of enzymes in AsA-GSH cycle and cellular redox states However, the positive effect of EBR on plant recovery was observed only at HL, but not LL These results indicate that BR accelerates the recovery of photosynthetic apparatus at HL by activation of enzymes in Calvin cycle and increasing the antioxidant capacity, which in turn mitigate the photooxidative stress and the inhibition of plant growth during the recovery

Journal ArticleDOI
TL;DR: The results suggest a protective role of EBR against PCBs stress which may strengthen phytoremediation approaches by enhancing plant tolerance.

Journal ArticleDOI
TL;DR: It is concluded that EBR could alleviate the detrimental effects of drought on photosynthesis by increasing the efficiency of light utilization and dissipation of excitation energy in the PSII antennae in leaves.

Journal ArticleDOI
TL;DR: In this article, the authors tested the hypothesis that changes in the light dependencies of photosynthesis, nonphotochemical quenching and PSII photoinactivation arises from changes in chloroplast proteins in CCMP 1516 grown at 30 (Low Light; LL) and 1000 (High Light; HL) μmol photons m(-2) s(-1) photon flux densities.
Abstract: Mechanistic understanding of the costs and benefits of photoacclimation requires knowledge of how photophysiology is affected by changes in the molecular structure of the chloroplast. We tested the hypothesis that changes in the light dependencies of photosynthesis, nonphotochemical quenching and PSII photoinactivation arises from changes in the abundances of chloroplast proteins in Emiliania huxleyi strain CCMP 1516 grown at 30 (Low Light; LL) and 1000 (High Light; HL) μmol photons m(-2) s(-1) photon flux densities. Carbon-specific light-saturated gross photosynthesis rates were not significantly different between cells acclimated to LL and HL. Acclimation to LL benefited cells by increasing biomass-specific light absorption and gross photosynthesis rates under low light, whereas acclimation to HL benefited cells by reducing the rate of photoinactivation of PSII under high light. Differences in the relative abundances of proteins assigned to light-harvesting (Lhcf), photoprotection (LI818-like), and the photosystem II (PSII) core complex accompanied differences in photophysiology: specifically, Lhcf:PSII was greater under LL, whereas LI818:PSII was greater in HL. Thus, photoacclimation in E. huxleyi involved a trade-off amongst the characteristics of light absorption and photoprotection, which could be attributed to changes in the abundance and composition of proteins in the light-harvesting antenna of PSII.

Journal ArticleDOI
TL;DR: Compared to Shiraz, the reduced stomata conductance values of Cs were accompanied by higher water use efficiency and photorespiration rates, as well as photosystem II photochemical potential, which was observed in the stability of Fv /Fm under drought stress.
Abstract: Drought stress is known to limit photosynthesis rates and to inflict photo-oxidative damage in grapevines. Grapevines, which are considered drought-tolerant plants, are characterized by diverse hydraulic and photosynthetic behaviors, depending on the cultivar. This research compared the photosynthesis and the photorespiration of Cabernet Sauvignon (Cs) (isohydric) and Shiraz (anisohydric) in an attempt to acquire a wider perspective on the iso/anisohydric phenomenon and its implications. Shiraz and Cs were subjected to terminal drought in the greenhouse. Soil water content (θ), leaf water potential (Ψl ) and stomata conductance (gs ) were measured to determine the cultivars' hydraulic behavior. Gas exchange and fluorometry measurements were taken at 21 and 2% O2 to acquire photosynthesis and photorespiration characteristics. Cs was found to behave in a near isohydric manner whereas Shiraz behaved in a near anisohydric manner. Compared to Shiraz, the reduced stomata conductance values of Cs were accompanied by higher water use efficiency and photorespiration rates, as well as photosystem II photochemical potential (Fv /Fm ). As compared with Shiraz, Cs compensated for lower stomata conductance by higher photosynthesis and photorespiration. These two processes contributed to higher electron flow rates that might have a role in photoinhibition avoidance, which was observed in the stability of Fv /Fm under drought stress.

Journal ArticleDOI
TL;DR: Although no conclusive evidence for the effect of the buoyancy of fronds was found, the interspecific discrepancies in thermo-sensitivity in the UV responses found in this study are consistent with various ecological and biogeographical differences described for these species.
Abstract: Lessonia nigrescens and Durvillaea antarctica, two large sub-Antarctic brown algae from the southern Chilean coast, were exposed to solar UV radiation in an outdoor system during a summer day (for 11 h) as well as to artificial UV radiation under controlled laboratory conditions at two temperatures (15 and 20 °C) for 72 h. Chlorophyll a fluorescence–based photoinhibition of photosynthesis was measured during the outdoor exposure, while electron transport rates, lipid peroxidation, antioxidant activity and content of phlorotannins were determined at different time intervals during the laboratory exposure. Under natural solar irradiances in summer, both species displayed well-developed dynamic photoinhibition: F v/F m values decreased by 70 % at noon coinciding with the levels of PAR >1,500 μmol m−2 s−1 and UV-B radiation >1 W m−2 and recovered substantially in the afternoon. In treatments including UV radiation, recovery in D. antarctica started already during the highest irradiances at noon. The results from laboratory exposures revealed that (a) elevated temperature of 20 °C exacerbated the detrimental effects of UV radiation on photochemical parameters (F v/F m and ETR); (b) peroxidative damage measured as MDA formation occurred rapidly and was strongly correlated with the decrease in F v/F m, especially at elevated temperature of 20 °C; (c) the antioxidant activity and increases in soluble phlorotannins were positively correlated mainly in response to UV radiation; (d) phlorotannins were rapidly induced but strongly impaired at 20 °C. In general, short-term (2–6 h) exposures to enhanced UV radiation and temperature were effective to activate the photochemical and biochemical defenses against oxidative stress, and they continued operative during 72 h, a time span clearly exceeding the tidal or diurnal period. Furthermore, when algae were exposed to dim light and control temperature of 15 °C for 6 h, F v/F m increased and lipid peroxidation decreased, indicating consistently that algae retained their ability for recovery. D. antarctica was the most sensitive species to elevated temperature for prolonged periods in the laboratory. Although no conclusive evidence for the effect of the buoyancy of fronds was found, the interspecific discrepancies in thermo-sensitivity in the UV responses found in this study are consistent with various ecological and biogeographical differences described for these species.

Journal ArticleDOI
TL;DR: The histidine-mediated O2 uptake method showed that (1)O2 production linearly increases with light intensity even above the saturation of photosynthesis, and nonradiative charge recombination of the primary charge separated state provides a photoprotective pathway.

Journal ArticleDOI
TL;DR: Application of the model to two C3 and two C4 species grown under the same conditions demonstrated that the model reproduced extremely well the light response trends of both electron transport and CO2 uptake, demonstrating novel operation of a key mechanism for plants to avoid high light damage.
Abstract: A new mechanistic model of the photosynthesis-light response is developed based on photosynthetic electron transport via photosystem II (PSII) to specifically describe light-harvesting characteristics and associated biophysical parameters of photosynthetic pigment molecules. This model parameterizes core' characteristics not only of the light response but also of difficult to measure physical parameters of photosynthetic pigment molecules in plants. Application of the model to two C3 and two C4 species grown under the same conditions demonstrated that the model reproduced extremely well (r2>0.992) the light response trends of both electron transport and CO2 uptake. In all cases, the effective absorption cross-section of photosynthetic pigment molecules decreased with increasing light intensity, demonstrating novel operation of a key mechanism for plants to avoid high light damage. In parameterizing these previously difficult to measure characteristics of light harvesting in higher plants, the model provides a new means to understand the mechanistic processes underpinning variability of CO2 uptake, for example, photosynthetic down-regulation or reversible photoinhibition induced by high light and photoprotection. However, an important next step is validating this parameterization, possibly through application to less structurally complex organisms such as single-celled algae.

Journal ArticleDOI
TL;DR: In this article, the physiological adaptations of Jatropha curcas in two regions with different climates, the Agreste (a semi-arid tropical climate) and the Florest zone subject to water stress, were compared.

Journal ArticleDOI
TL;DR: Bioinspired by diatoms, biomimetic silicification confers an artificial shell on cyanob bacteria to alleviate photoinhibition; thus, the photosynthesis of the resulting cyanobacteria@SiO2 becomes more efficient under high light conditions.

Journal ArticleDOI
TL;DR: It is concluded that PSI is more sensitive than PSII to prolonged severe drought in these three drought-tolerant species, and CEF is essential for photoprotection in them.
Abstract: Drought stress can induce closure of stomata, thus leading to photoinhibition. The effects of prolonged severe drought under natural growing conditions on photosystem I (PSI), photosystem II (PSII) and cyclic electron flow (CEF) in drought-tolerant tree species are unclear. In spring 2010, southwestern China confronted severe drought that lasted several months. Using three dominant evergreen species, Cleistanthus sumatranus (Miq.) Muell. Arg. (Euphorbiaceae), Celtis philippensis Bl. (Ulmaceae) and Pistacia weinmannifolia J. Poisson ex Franch. (Anacardiaceae) that are native to a tropical limestone forest, we investigated the influence of this stress on PSI and PSII activities as well as light energy distribution in the PSII and P700 redox state. By the end of the drought period, predawn leaf water potential (Ψ(pd)) largely declined in each species, especially in C. sumatranus. Photosystem I activity strongly decreased in the three species, especially in C. sumatranus which showed a decrease of 65%. The maximum quantum yield of PSII after dark adaptation remained stable in P. weinmannifolia and C. philippensis but significantly decreased in C. sumatranus. Light response curves indicated that both linear electron flow and non-photochemical quenching were severely inhibited in C. sumatranus along with disappearance of CEF, resulting in deleterious excess light energy in PSII. We conclude that PSI is more sensitive than PSII to prolonged severe drought in these three drought-tolerant species, and CEF is essential for photoprotection in them.

Journal ArticleDOI
TL;DR: It is hypothesised that acetate replaces the bicarbonate associated to the non-heme iron and changes the environment of QA and QB affecting photosystem II charge recombination events and photoinhibition.

Journal ArticleDOI
TL;DR: It is demonstrated that Psb28-1 plays an important role in PSII repair through association with the CP43-less monomer, particularly at high temperatures.

Journal ArticleDOI
TL;DR: Overheating due to high irradiance was avoided by turning the PBR out of the sun or using a cooling system, which maintained the temperature close to the species-specific temperature optima.
Abstract: Photosynthetic activity and temperature regulation of microalgal cultures (Chlorella vulgaris and Scenedesmus obliquus) under different irradiances controlled by a solar tracker and different cell densities were studied in outdoor flat panel photobioreactors. An automated process control unit regulated light and temperature as well as pH value and nutrient concentration in the culture medium. CO2 was supplied using flue gas from an attached combined block heat and power station. Photosynthetic activity was determined by pulse amplitude modulation fluorometry. Compared to the horizontal irradiance of 55 mol photons m−2 d−1 on a clear day, the solar tracked photobioreactors enabled a decrease and increase in the overall light absorption from 19 mol photons m−2 d−1 (by rotation out of direct irradiance) to 79 mol photons m−2 d−1 (following the position of the sun). At biomass concentrations below 1.1 g cell dry weight (CDW) L−1, photoinhibition of about 35 % occurred at irradiances of ≥1,000 μmol photons m−2 s−1 photosynthetic active radiation (PAR). Using solar tracked photobioreactors, photoinhibition can be reduced and at optimum biomass concentration (≥2.3 g CDW L−1), the culture was irradiated up to 2,000 μmol photons m−2 s−1 to overcome light limitation with biomass yields of 0.7 g CDW mol photons−1 and high photosynthetic activities indicated by an effective quantum yield of 0.68 and a maximum quantum yield of 0.80 (F v/F m). Overheating due to high irradiance was avoided by turning the PBR out of the sun or using a cooling system, which maintained the temperature close to the species-specific temperature optima.

Journal ArticleDOI
TL;DR: Under controlled laboratory conditions, C. ohadii showed marked structural and photosynthetic performance changes, depending on the carbon source used during growth, as well as remarkable resistance to photoinhibition.

Journal ArticleDOI
TL;DR: The isolation and characterization of a highly active and robust dimeric PSII complex from C. merolae is reported, which is highly stable across a range of extreme light, temperature, and pH conditions and provides the first direct evidence of pH-dependent non-photochemical quenching in the red algal PSII reaction center.

Journal ArticleDOI
TL;DR: Functional characterization of the Arabidopsis gene encoding D1 C-terminal processing enzyme (AtCtpA) in the chloroplast thylakoid lumen is reported, revealing an unsuspected link between D1 maturation and PSII supercomplex assembly in land plants.
Abstract: Photosystem II (PSII) reaction center protein D1 is synthesized as a precursor (pD1) with a short C-terminal extension. The pD1 is processed to mature D1 by carboxyl-terminal peptidase A to remove the C-terminal extension and form active protein. Here we report functional characterization of the Arabidopsis gene encoding D1 C-terminal processing enzyme (AtCtpA) in the chloroplast thylakoid lumen. Recombinant AtCtpA converted pD1 to mature D1 and a mutant lacking AtCtpA retained all D1 in precursor form, confirming that AtCtpA is solely responsible for processing. As with cyanobacterial ctpa, a knockout Arabidopsis atctpa mutant was lethal under normal growth conditions but was viable with sucrose under low-light conditions. Viable plants, however, showed deficiencies in PSII and thylakoid stacking. Surprisingly, unlike its cyanobacterial counterpart, the Arabidopsis mutant retained both monomer and dimer forms of the PSII complexes that, although nonfunctional, contained both the core and extrinsic subunits. This mutant was also essentially devoid of PSII supercomplexes, providing an unexpected link between D1 maturation and supercomplex assembly. A knock-down mutant expressing about 2% wild-type level of AtCtpA showed normal growth under low light but was stunted and accumulated pD1 under high light, indicative of delayed C-terminal processing. Although demonstrating the functional significance of C-terminal D1 processing in PSII biogenesis, our study reveals an unsuspected link between D1 maturation and PSII supercomplex assembly in land plants, opening an avenue for exploring the mechanism for the association of light-harvesting complexes with the PSII core complexes.

Journal ArticleDOI
TL;DR: Presented evidence suggests that PSBS-dependent NPQ, although possibly present in some Chlorophyta, was stably acquired in the Cambrian period about 500 million years ago, before late Streptophyte algae diverged from plants ancestors.
Abstract: Light is the energy source for photosynthetic organisms but, if absorbed in excess, it can drive to the formation of reactive oxygen species and photoinhibition. One major mechanism to avoid oxidative damage in plants and algae is the dissipation of excess excitation energy as heat, called non-photochemical quenching (NPQ). Eukaryotic algae and plants, however, rely on two different proteins for NPQ activation, the former mainly depending on LHCSR (Lhc-like protein Stress Related; previously called Li818, Light Induced protein 818), whereas in the latter the major role is played by a distinct protein, PSBS (photosystem II subunit S). In the moss Physcomitrella patens, which diverged from vascular plants early after land colonization, both these proteins were found to be present and active in inducing NPQ, suggesting that during plants evolution both mechanisms co-existed. In order to investigate in more detail NPQ adaptation toward land colonization, we analyzed Streptophyte algae, the latest organisms to diverge from the land plants ancestors. Among them we found evidence of a PSBS-dependent NPQ in species belonging to Charales, Coleochaetales and Zygnematales, the latest groups to diverge from land plants ancestors. On the contrary earlier diverging algae, as Mesostigmatales and Klebsormidiales, likely rely on LHCSR for their NPQ activation. Presented evidence thus suggests that PSBS-dependent NPQ, although possibly present in some Chlorophyta, was stably acquired in the Cambrian period about 500 million years ago, before late Streptophyte algae diverged from plants ancestors.