scispace - formally typeset
Search or ask a question

Showing papers on "Thymoquinone published in 2013"


Journal ArticleDOI
02 Oct 2013-PLOS ONE
TL;DR: It is demonstrated that the anti-proliferative and pro-apoptotic effects of TQ in breast cancer are mediated through p38 phosphorylation via ROS generation.
Abstract: Due to narrow therapeutic window of cancer therapeutic agents and the development of resistance against these agents, there is a need to discover novel agents to treat breast cancer. The antitumor activities of thymoquinone (TQ), a compound isolated from Nigella sativa oil, were investigated in breast carcinoma in vitro and in vivo. Cell responses after TQ treatment were assessed by using different assays including MTT assay, annexin V-propidium iodide staining, Mitosox staining and Western blot. The antitumor effect was studied by breast tumor xenograft mouse model, and the tumor tissues were examined by histology and immunohistochemistry. The level of anti-oxidant enzymes/molecules in mouse liver tissues was measured by commercial kits. Here, we show that TQ induced p38 phosphorylation and ROS production in breast cancer cells. These inductions were found to be responsible for TQ’s anti-proliferative and pro-apoptotic effects. Moreover, TQ-induced ROS production regulated p38 phosphorylation but not vice versa. TQ treatment was found to suppress the tumor growth and this effect was further enhanced by combination with doxorubicin. TQ also inhibited the protein expression of anti-apoptotic genes, such as XIAP, survivin, Bcl-xL and Bcl-2, in breast cancer cells and breast tumor xenograft. Reduced Ki67 and increased TUNEL staining were observed in TQ-treated tumors. TQ was also found to increase the level of catalase, superoxide dismutase and glutathione in mouse liver tissues. Overall, our results demonstrated that the anti-proliferative and pro-apoptotic effects of TQ in breast cancer are mediated through p38 phosphorylation via ROS generation.

172 citations


Journal ArticleDOI
TL;DR: Thymoquinone effectively inhibits tumor growth and angiogenesis both in vitro and in vivo, and inhibition of NF-κB and downstream effector molecules is a possible underlying mechanism of the antitumor and anti-angiogenic activity of thymOquinone in osteosarcoma.
Abstract: Thymoquinone (TQ), the predominant bioactive constituent derived from the medicinal spice Nigella sativa (also known as black cumin), has been applied for medical purposes for more than 2,000 years. Recent studies reported that thymoquinone exhibited inhibitory effects on the cell proliferation of several cancer cell lines. This study was performed to investigate the antitumor and anti-angiogenic effects of thymoquinone on osteosarcoma in vitro and in vivo. Our results showed that thymoquinone induced a higher percentage of growth inhibition and apoptosis in the human osteosarcoma cell line SaOS-2 compared to that of control, and thymoquinone significantly blocked human umbilical vein endothelial cell (HUVEC) tube formation in a dose-dependent manner. To investigate the possible mechanisms involved in these events, we performed electrophoretic mobility shift assay (EMSA) and western blot analysis, and found that thymoquinone significantly downregulated NF-κB DNA-binding activity, XIAP, survivin and VEGF in SaOS-2 cells. Moreover, the expression of cleaved caspase-3 and Smac were upregulated in SaOS-2 cells after treatment with thymoquinone. In addition to these in vitro results, we also found that thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing NF-κB and its regulated molecules. Collectively, our results demonstrate that thymoquinone effectively inhibits tumor growth and angiogenesis both in vitro and in vivo. Moreover, inhibition of NF-κB and downstream effector molecules is a possible underlying mechanism of the antitumor and anti-angiogenic activity of thymoquinone in osteosarcoma.

144 citations


Journal ArticleDOI
TL;DR: It is contended that thymoquinone and/or its analogues may have clinical potential as an anticancer agent alone or in combination with chemotherapeutic drugs such as cisplatin.
Abstract: Phytochemical compounds are emerging as a new generation of anticancer agents with limited toxicity in cancer patients. The purpose of this study was to investigate the potential impact of thymoquinone (TQ), the major constituent of black seed, on survival, invasion of cancer cells in vitro, and tumor growth in vivo. Exposure of cells derived from lung (LNM35), liver (HepG2), colon (HT29), melanoma (MDA-MB-435), and breast (MDA-MB-231 and MCF-7) tumors to increasing TQ concentrations resulted in a significant inhibition of viability through the inhibition of Akt phosphorylation leading to DNA damage and activation of the mitochondrial-signaling proapoptotic pathway. We provide evidence that TQ at non-toxic concentrations inhibited the invasive potential of LNM35, MDA-MB-231, and MDA-MB231-1833 cancer cells. Moreover, we demonstrate that TQ synergizes with DNA-damaging agent cisplatin to inhibit cellular viability. The anticancer activity of thymoquinone was also investigated in athymic mice inoculated with the LNM35 lung cells. Administration of TQ (10 mg/kg/i.p.) for 18 days inhibited the LNM35 tumor growth by 39% (P < 0.05). Tumor growth inhibition was associated with significant increase in the activated caspase-3. The in silico target identification suggests several potential targets of TQ mainly HDAC2 proteins and the 15-hydroxyprostaglandin dehydrogenase. In this context, we demonstrated that TQ treatment resulted in a significant inhibition of HDAC2 proteins. In view of the available experimental findings, we contend that thymoquinone and/or its analogues may have clinical potential as an anticancer agent alone or in combination with chemotherapeutic drugs such as cisplatin.

127 citations


Journal ArticleDOI
TL;DR: The results indicate that thymoquinone can be a potential immunotherapeutic agent not only as an adjuvant therapy for melanoma, but also, in the control and prevention of metastatic melanoma.

125 citations


Journal ArticleDOI
09 Sep 2013-PLOS ONE
TL;DR: It is shown that TQ selectively inhibits the clonogenicity of glioblastoma cells as compared to normal human astrocytes, and a novel mechanism of action for TQ is described as an autophagy inhibitor selectively targeting gliobeasts.
Abstract: Glioblastoma is the most aggressive and common type of malignant brain tumor in humans, with a median survival of 15 months. There is a great need for more therapies for the treatment of glioblastoma. Naturally occurring phytochemicals have received much scientific attention because many exhibit potent tumor killing action. Thymoquinone (TQ) is the bioactive compound of the Nigella sativa seed oil. TQ has anti-oxidant, anti-inflammatory and anti-neoplastic actions with selective cytotoxicity for human cancer cells compared to normal cells. Here, we show that TQ selectively inhibits the clonogenicity of glioblastoma cells as compared to normal human astrocytes. Also, glioblastoma cell proliferation could be impaired by chloroquine, an autophagy inhibitor, suggesting that glioblastoma cells may be dependent on the autophagic pathway for survival. Exposure to TQ caused an increase in the recruitment and accumulation of the microtubule-associated protein light chain 3-II (LC3-II). TQ also caused an accumulation of the LC3-associated protein p62, confirming the inhibition of autophagy. Furthermore, the levels of Beclin-1 protein expression were unchanged, indicating that TQ interferes with a later stage of autophagy. Finally, treatment with TQ induces lysosome membrane permeabilization, as determined by a specific loss of red acridine orange staining. Lysosome membrane permeabilization resulted in a leakage of cathepsin B into the cytosol, which mediates caspase-independent cell death that can be prevented by pre-treatment with a cathepsin B inhibitor. TQ induced apoptosis, as determined by an increase in PI and Annexin V positive cells. However, apoptosis appears to be caspase-independent due to failure of the caspase inhibitor z-VAD-FMK to prevent cell death and absence of the typical apoptosis related signature DNA fragmentation. Inhibition of autophagy is an exciting and emerging strategy in cancer therapy. In this vein, our results describe a novel mechanism of action for TQ as an autophagy inhibitor selectively targeting glioblastoma cells.

109 citations


Journal ArticleDOI
TL;DR: It is suggested that TQ has neuroprotection potential against Aβ1-42 in rat hippocampal and cortical neurons and thus may be a promising candidate for Alzheimer disease treatment.

109 citations


Journal ArticleDOI
Ting Bai1, Li-Hua Lian1, Yan-Ling Wu1, Ying Wan1, Ji-Xing Nan1 
TL;DR: Investigation of the anti-fibrotic mechanism of TQ in lipopolysaccharide (LPS)-activated rat hepatic stellate cells line, T-HSC/Cl-6 demonstrated that TQ attenuates liver fibrosis partially via blocking TLR4 expression and PI3K phosphorylation on the activated HSCs.

107 citations


Journal ArticleDOI
TL;DR: TQ's mechanism of action against PI3K/Akt signaling and its downstream targets is investigated by modulating proteins translational machinery, leading to apoptosis in cancer cells, thus ratifying the involvement of Akt in apoptosis.

106 citations


Journal ArticleDOI
TL;DR: The results strongly suggest an important therapeutic use of test compounds, especially TQ, in the prevention of cardiovascular disease risks parameters, and effectively ameliorated all the altered cardiovascular risk parameters.

97 citations


Journal ArticleDOI
TL;DR: It is seen that TQ targets cellular copper in prostate cancer cell lines leading to a prooxidant cell death, which is believed to better explain the anticancer activity of plant-derived antioxidants.
Abstract: Plant-derived dietary antioxidants have attracted considerable interest in recent past for their chemopreventive and cancer therapeutic abilities in animal models. Thymoquinone (TQ) is the major bioactive constituent of volatile oil of Nigella sativa and has been shown to exert various pharmacological properties, such as anti-inflammatory, cardiovascular, analgesic, anti-neoplastic, anticancer and chemopreventive. Although several mechanisms have been suggested for the chemopreventive and anticancer activity of TQ, a clear mechanism of action of TQ has not been elucidated. TQ is a known antioxidant at lower concentrations and most of the studies elucidating the mechanism have centered on the antioxidant property. However, recent publications have shown that TQ may act as a prooxidant at higher concentrations. It is well known that plant-derived antioxidants can switch to prooxidants even at low concentrations in the presence of transition metal ions such as copper. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Copper is an important metal ion present in the chromatin and is closely associated with DNA bases, particularly guanine. Using human peripheral lymphocytes and comet assay, we first show that TQ is able to cause oxidative cellular DNA breakage. Such a DNA breakage can be inhibited by copper-chelating agents, neocuproine and bathocuproine, and scavengers of reactive oxygen species. Further, it is seen that TQ targets cellular copper in prostate cancer cell lines leading to a prooxidant cell death. We believe that such a prooxidant cytotoxic mechanism better explains the anticancer activity of plant-derived antioxidants.

96 citations


Journal ArticleDOI
TL;DR: NLCs could be a promising vehicle for the oral delivery of TQ and improve its gastroprotective properties, and inhibited the formation of ethanol-induced ulcers through the modulation of heat shock protein-70 (Hsp70).
Abstract: Background: Nanostructured lipid carriers (NLCs), composed of solid and liquid lipids, and surfactants are potentially good colloidal drug carriers. Thymoquinone is the main bioactive compound of Nigella sativa. In this study, the preparation, gastroprotective effects, and pharmacokinetic (PK) properties of thymoquinone (TQ)-loaded NLCs (TQNLCs) were evaluated. Method: TQNLCs were prepared using hydrogenated palm oil (Softisan® 154), olive oil, and phosphatidylcholine for the lipid phase and sorbitol, polysorbate 80, thimerosal, and double distilled water for the liquid lipid material. A morphological assessment of TQNLCs was performed using various methods. Analysis of the ulcer index, hydrogen concentration, mucus content, and biochemical and histochemical studies confirmed that the loading of TQ into the NLCs significantly improved the gastroprotective activity of this natural compound against the formation of ethanol-induced ulcers. The safety of TQNLC was tested on WRL68 liver normal cells with cisplatin as a positive control. Results: The average diameter of the TQNLCs was 75 ± 2.4 nm. The particles had negative zeta potential values of −31 ± 0.1 mV and a single melting peak of 55.85°C. Immunohistochemical methods revealed that TQNLCs inhibited the formation of ethanol-induced ulcers through the modulation of heat shock protein-70 (Hsp70). Acute hepatotoxic effects of the TQNLCs were not observed in rats or normal human liver cells (WRL-68). After validation, PK studies in rabbits showed that the PK properties of TQ were improved and indicated that the drug behaves linearly. The Tmax, Cmax, and elimination half-life of TQ were found to be 3.96 ± 0.19 hours, 4811.33 ± 55.52 ng/mL, and 4.4933 ± 0.015 hours, respectively, indicating that TQ is suitable for extravascular administration. Conclusion: NLCs could be a promising vehicle for the oral delivery of TQ and improve its gastroprotective properties.

Journal ArticleDOI
TL;DR: Thymoquinone (TQ) is an active ingredient isolated from Nigella sativa and it is indicated that TQ could be a promising agent for the treatment of leukemia.
Abstract: There has been a growing interest in naturally occurring compounds from traditional medicine with anti-cancer potential. Nigella sativa (black seed) is one of the most widely studied plants. This annual herb grows in countries bordering the Mediterranean Sea and India. Thymoquinone (TQ) is an active ingredient isolated from Nigella sativa. The anti-cancer effect of TQ, via the induction of apoptosis resulting from mitochondrial dysfunction, was assessed in an acute lymphocyte leukemic cell line (CEMss) with an IC50 of 1.5 µg/mL. A significant increase in chromatin condensation in the cell nucleus was observed using fluorescence analysis. The apoptosis was then confirmed by Annexin V and an increased number of cellular DNA breaks in treated cells were observed as a DNA ladder. Treatment of CEMss cells with TQ encouraged apoptosis with cell death-transducing signals by a down-regulation of Bcl-2 and up-regulation of Bax. Moreover, the significant generation of cellular ROS, HSP70 and activation of caspases 3 and 8 were also observed in the treated cells. The mitochondrial apoptosis was clearly associated with the S phase cell cycle arrest. In conclusion, the results from the current study indicated that TQ could be a promising agent for the treatment of leukemia.

Journal ArticleDOI
TL;DR: Investigation of anti-inflammatory effect of the alcoholic extracts of N. sativa seeds and its callus on mix glial cells of rat with regard to their thymoquinone (TQ) content found decrease in the TQ content of the callus was accompanied with an increase in its phenolic content and antioxidant ability.
Abstract: Anti-inflammatory effect of the alcoholic extracts of N. sativa seeds and its callus on mix glial cells of rat with regard to their thymoquinone (TQ) content was investigated. Callus induction was achieved for explants of young leaf, stem, petiole, and root of N. sativa on solid Murashige and Skoog (MS) medium containing 2,4-D (1 mg/l) and kinetin (2.15 mg/l). TQ content of the alcoholic extracts was measured by HPLC. Total phenols were determined using Folin–Ciocalteu method and antioxidant power was estimated using FRAP tests. The mix glial cells, inflamed by lipopolysaccharide, were subjected to anti-inflammatory studies in the presence of various amounts of TQ and the alcoholic extracts. Viability of the cells and nitric oxide production were measured by MTT and Griess reagent, respectively. The leaf callus obtained the highest growth rate (115.4 mg/day) on MS medium containing 2,4-D (0.22 mg/l) and kinetin (2.15 mg/l). Analyses confirmed that TQ content of the callus of leaf was 12 times higher than that measured in the seeds extract. However, it decreased as the calli aged. Decrease in the TQ content of the callus was accompanied with an increase in its phenolic content and antioxidant ability. Studies on the inflamed rat mix glial cells revealed significant reduction in the nitric oxide production in the presence of 0.2 to 1.6 mg/ml of callus extract and 1.25 to 20 μl/ml of the seed extracts. However, the extent of the effects is modified assumingly due to the presence of the other existing substances in the extracts.

Journal ArticleDOI
TL;DR: The purpose of this review is to highlight the potential of TQ as an anticancer agent and the chances of this compound in the clinical treatment of cancer, with special attention on breast cancer treatment.
Abstract: Thymoquinone (TQ) is the bioactive phytochemical constituent of the seeds oil of Nigella sativa In vitro and in vivo research has thoroughly investigated the anticancer effects of TQ against several cancer cell lines and animal models As a result, a considerable amount of information has been generated from research thus providing a better understanding of the anti-proliferating activity of this compound Therefore, it is appropriate that TQ should move from testing on the bench to clinical experiments The purpose of this review is to highlight the potential of TQ as an anticancer agent and the chances of this compound in the clinical treatment of cancer, with special attention on breast cancer treatment

Journal ArticleDOI
TL;DR: It is suggested that thymoquinone has a potent anti proliferative activity by regulating the G1/S phase cell cycle transition and exhibit a beneficial role in the treatment of HCC.

Journal ArticleDOI
TL;DR: Results revealed up-regulation of the key upstream signaling factors, which ultimately cause increase in their regulatory p53 levels affecting the induction of G2/M cell cycle arrest and apoptosis and provide mechanistic insights for understanding the molecular basis and utility of the anti-tumor activity of TQ, RES and CAPE.
Abstract: Background: Phytochemical compounds are emerging as a new generation of anticancer agents with limited toxicity in cancer patients. The purpose of this study was to investigate the potential effcts of thymoquinone, caffeic acid phenylester (CAPE) and resveratrol on inflammatory markers, oxidative stress parameters, mRNA expression levels of proteins and survival of lung cancer cells in Vitro. Materials and Methods: The A549 cell line was treated with benzo(a)pyrene, benzo(a)pyrene plus caffeic acid phenylester (CAPE), benzo(a)pyrene plus resveratrol (RES), and benzo(a)pyrene plus thymoquinone (TQ). Inflammatory markers, oxidative stress parameters, mRNA expression levels of apoptotic and anti-apoptotic proteins and cell viability were assessed and results were compared among study groups. Results: TQ treatment up-regulated Bax and down-regulated Bcl2 proteins and increased the Bax/Bcl2 ratio. CAPE and TQ also up-regulated Bax expression. RES and TQ down-regulated the expression of Bcl-2. All three agents decreased the expression of cyclin D and increased the expression of p21. However, the most significant up-regulation of p21 expression was observed in TQ treated cells. CAPE, RES and TQ up-regulated TRAIL receptor 1 and 2 expression. RES and TQ down-regulated the expression of NF-kappa B and IKK1. Viability of CAPE, RES and TQ treated cells was found to be significantly decreased when compared with the control group (p=0.004). Conclusions: Our results revealed up-regulation of the key upstream signaling factors, which ultimately cause increase in their regulatory p53 levels affecting the induction of G2/M cell cycle arrest and apoptosis. Overall these results provide mechanistic insights for understanding the molecular basis and utility of the anti-tumor activity of TQ, RES and CAPE.

Journal ArticleDOI
TL;DR: The both extracts especially, ME significantly improve cardiovascular risk parameters in treated rats, and can be used in reactive oxygen species disorders such as cardiovascular diseases.
Abstract: Background Nigella sativa belonging to the Ranunculaceae family has been reported to use for thousands of years as protective and curative traditional medicine against a number of diseases. GC-MS analysis of methanolic extract (ME) and volatile oil (VO) extracted from Nigella sativa seed oil was performed by two different mass spectrometry libraries, WIlEY8 and NIST05s. The cholesterol lowering and antioxidant actions of VO and ME fractions were investigated in atherogenic suspension fed rats.

Journal ArticleDOI
TL;DR: PLGA encapsulated TQ nanoparticle with sustained release property has preserved antioxidant as well as anti-microbial activity, and therefore suggesting its therapeutic applications in various food samples.
Abstract: The aim of the present study was to synthesize and characterize the Thymoquinone (TQ) encapsulated PLGA (poly (dl-lactide-co-glycolide) nanoparticles, and further evaluate for its antioxidant and anti-bacterial activities. TQ is a potential active ingredient of Nigella sativa seed and possess a spectrum of therapeutic properties. Nanoparticles were prepared according to solid-in-oil-in-water (s/o/w) solvent evaporation method. Dynamic laser light scattering (DLS) and SEM studies indicated a mean particle size of < 200 nm. The success of encapsulation was confirmed by FTIR technique, and the encapsulation efficiency (EE) of TQ was determined to be 62%. In vitro drug release study showed a maximum release of TQ at 75% and 54 % respectively for artificial intestinal and gastric juices over the period of 7 days. DPPH radical scavenging activity of the nanoparticles was found to be 71% at 1 mg/ml concentration. It also exhibited antibacterial property against E. coli, Staphylococcus aureus and Salmonella typhi strains, tested using well diffusion method. In conclusion, our study shows that PLGA encapsulated TQ nanoparticle with sustained release property has preserved antioxidant as well as anti-microbial activity, and therefore suggesting its therapeutic applications in various food samples. DOI: http://dx.doi.org/10.3329/icpj.v2i12.17017 International Current Pharmaceutical Journal, November 2013, 2(12): 202-207


Journal ArticleDOI
01 Jul 2013-Pancreas
TL;DR: Results obtained in this study support a potential role for N. sativa and TQ in ameliorating inflammation during diabetes and preserving β cells.
Abstract: Objective The aim of this study was to investigate the effect of Nigella sativa and thymoquinone (TQ) on oxidative stress, cyclooxygenase-2 (COX-2), and intracellular adhesion molecule-1 mRNA expression in the pancreas of streptozotocin (STZ)-induced diabetic rats as a model of type 1 diabetes. Methods Five experimental groups including control group, STZ-induced diabetic group, aqueous extract diabetic treated group, oil diabetic treated group, and TQ diabetic treated group were used to obtain the pancreatic tissue samples and serum for investigation. Results A significant increase in COX-2 mRNA expression was detected in STZ-induced diabetic group after 10 days of diabetes induction indicating an important role of the enzyme COX-2 in the inflammation accompanying STZ diabetes in contrast to that detected for intracellular adhesion molecule-1. Treatment of STZ diabetic rats with N. sativa aqueous extract and TQ significantly suppressed the expression of COX-2 enzyme in the pancreatic tissue. Nigella sativa and TQ treatment also suppressed pancreatic tissue lipid peroxidation malondialdehyde levels and increased the level of superoxide dismutase antioxidant enzyme correlated with the decrease in COX-2 mRNA expression. Conclusions Results obtained in this study support a potential role for N. sativa and TQ in ameliorating inflammation during diabetes and preserving β cells.

Journal ArticleDOI
TL;DR: It is demonstrated that inhibition of morphine-induced oxidative stress, increase in the expression of brain inducible NO synthase and NO overproduction by thymoquinone can attenuate the development of morphine tolerance and dependence.

Journal ArticleDOI
TL;DR: The results obtained clearly indicated the role of oxidative stress in the induction of NaF toxicity and suggested hepatoprotective effects of TQ against the toxicity of fluoride compounds.
Abstract: Many active ingredients extracted from herbal and medicinal plants are extensively studied for their beneficial effects. Antioxidant activity and free radical scavenging properties of thymoquinone (TQ) have been reported. The present study evaluated the possible protective effects of TQ against the toxicity and oxidative stress of sodium fluoride (NaF) in the liver of rats. Rats were divided into four groups, the first group served as the control group and was administered distilled water whereas the NaF group received NaF orally at a dose of 10 mg/kg for 4 weeks, TQ group was administered TQ orally at a dose of 10 mg/kg for 5 weeks, and the NaF-TQ group was first given TQ for 1 week and was secondly administered 10 mg/kg/day NaF in association with 10 mg/kg TQ for 4 weeks. Rats intoxicated with NaF showed a significant increase in lipid peroxidation whereas the level of reduced glutathione (GSH) and the activity of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) and glutathione peroxidase (GPx) were reduced in hepatic tissues. The proper functioning of the liver was also disrupted as indicated by alterations in the measured liver function indices and biochemical parameters. TQ supplementation counteracted the NaF-induced hepatotoxicity probably due to its strong antioxidant activity. In conclusion, the results obtained clearly indicated the role of oxidative stress in the induction of NaF toxicity and suggested hepatoprotective effects of TQ against the toxicity of fluoride compounds.

Journal ArticleDOI
TL;DR: Thymoquinone showed sustained inhibition of breast cancer cell proliferation with long-term treatment with the help of cell cycle assay and specificity of phase arrest was determined by thymoquone dose.
Abstract: Background: Nigella sativa or black seed extract has been reported to show various medicinal benefits. Thymoquinone which is an active compound of its seed has been reported to contain anti-cancer properties. Objective: The study addressed the anti-cancer efficiency of long-term in vitro treatment with thymoquinone towards human breast cancer cell lines MCF-7. Materials and Methods: Cell proliferation was determined with CellTiter 96 Aqueous. Non-Radioactive Cell Proliferation Assay Kit. It was followed with trypan blue exclusion test to determine the percentage of viable cells. The study incorporated cell cycle assay to distinguish cell distribution at various cell cycle phases using Cycletest Plus DNA Reagent Kit. The apoptosis detection kit was used to determine the percentage of apoptotic and necrotic cells using flow cytometry. Results: The 50% inhibitory concentration (IC 50 ) value determined using the proliferation assay was 25 μM thymoquinone. Late apoptotic cell percentage increased rapidly when treatment duration was increased to 24 h with 25 and 100 μM thymoquinone. Further analysis using cell cycle assay showed thymoquinone inhibition of breast cancer cell proliferation at minimal dose 25 μM and led to S phase arrest significantly at 72 h treatment (P = 0.009). It was also noted elevation sub-G 1 peak following treatment with 25 μM thymoquinone for 12 h. Increase in thymoquinone to 50 μM caused G 2 phase arrest at each time-point studied. Conclusion: In general thymoquinone showed sustained inhibition of breast cancer cell proliferation with long-term treatment. Specificity of phase arrest was determined by thymoquinone dose.

Journal ArticleDOI
TL;DR: The results suggest an association between p38 β not p38α and oral cancer development and evidences suggesting that the anti-tumor activity of TQ may be attributed to the downregulation of p38β MAPK.
Abstract: Oral cancer is a common malignancy associated with high morbidity and mortality. While p38 MAPK is reported to be involved in different cellular activities such as proliferation and differentiation, reports rarely define the roles of the individual members of the p38 MAPK family in cancer. We used two unique cell lines developed by our lab representing chemically induced oral cancer cells (T28) and non-tumor cells (N28) obtained from tissues surrounding the induced cancer as a model to screen out whether p38 MAPK is involved in the malignant transformation processes. The results suggest an association between p38β not p38α and oral cancer development. Additionally, the anti-cancer activity of thymoquinone (TQ) was screened out and we found evidences suggesting that the anti-tumor activity of TQ may be attributed to the downregulation of p38β MAPK.

Journal ArticleDOI
TL;DR: Nigella sativa oil (or TQ) might be useful as nutritional supplement to complement surgery and chemoprevention in FAP through induction of tumor-cell specific apoptosis and by modulating Wnt signaling through activation of GSK-3β.
Abstract: Patients with familial adenomatous polyposis (FAP) are at increased risk for the development of colorectal cancer. Surgery and chemoprevention are the most effective means to prevent cancer development. Thymoquinone (TQ) is considered the main compound of the volatile Nigella sativa seed oil and has been reported to possess anticarcinogenic properties. In this study we evaluated the chemopreventive properties of TQ in a mouse model of FAP. APCMin mice were fed with chow containing 37.5 mg/kg or 375 mg/kg TQ for 12 weeks. H&E stained intestine tissue sections were assessed for tumor number, localization, size, and grade. Immunohistochemistry for β-catenin, c-myc, Ki-67 and TUNEL-staining was performed to investigate TQ’s effect on major colorectal cancer pathways. TQ’s impact on GSK-3β and β-catenin were studied in RKO cells. 375 mg/kg but not 37.5 mg/kg TQ decreased the number of large polyps in the small intestine of APCMin mice. TQ induced apoptosis in the neoplastic tissue but not in the normal mucosa. Furthermore, upon TQ treatment, β-catenin was retained at the membrane and c-myc decreased in the nucleus, which was associated with a reduced cell proliferation in the villi. In vitro, TQ activated GSK-3β, which induced membranous localization of β-catenin and reduced nuclear c-myc expression. In summary, TQ interferes with polyp progression in ApcMin mice through induction of tumor-cell specific apoptosis and by modulating Wnt signaling through activation of GSK-3β. Nigella sativa oil (or TQ) might be useful as nutritional supplement to complement surgery and chemoprevention in FAP.

Journal ArticleDOI
TL;DR: The findings of this study suggest that TQ may prevent neurotoxicity and Aβ1–40-induced apoptosis, and is worth studying further for its potential to reduce the risks of developing Alzheimer’s disease.
Abstract: Thymoquinone (TQ), a bioactive constituent of Nigella sativa Linn (N. sativa) has demonstrated several neuropharmacological attributes. In the present study, the neuroprotective properties of TQ were investigated by studying its anti-apoptotic potential to diminish β-amyloid peptide 1–40 sequence (Aβ1–40)-induced neuronal cell death in primary cultured cerebellar granule neurons (CGNs). The effects of TQ against Aβ1–40-induced neurotoxicity, morphological damages, DNA condensation, the generation of reactive oxygen species, and caspase-3, -8, and -9 activation were investigated. Pretreatment of CGNs with TQ (0.1 and 1 μM) and subsequent exposure to 10 μM Aβ1–40 protected the CGNs against the neurotoxic effects of the latter. In addition, the CGNs were better preserved with intact cell bodies, extensive neurite networks, a loss of condensed chromatin and less free radical generation than those exposed to Aβ1–40 alone. TQ pretreatment inhibited Aβ1–40-induced apoptosis of CGNs via both extrinsic and intrinsic caspase pathways. Thus, the findings of this study suggest that TQ may prevent neurotoxicity and Aβ1–40-induced apoptosis. TQ is, therefore, worth studying further for its potential to reduce the risks of developing Alzheimer’s disease.

Journal ArticleDOI
TL;DR: The results strongly suggest that TQ intervenes with TNF and NF-kappa-B signaling during TQ-mediated induction of apoptosis in cancer cells.
Abstract: Thymoquinone (TQ) is the active ingredient extracted from the essential oil of Nigella sativa. A number of studies implicated TQ as an antitumor agent. In this study, cytotoxic effects of the oil of N. sativa and TQ were evaluated on human cervical cancer cell line, HeLa cells. IC50 value was ~0.125 μl/ml for N. sativa oil preparations and 12.5 μM for TQ. TQ strongly inhibited wound healing at all concentrations ranging from 12.5 to 100 μM in a scratch wound healing assay. Additionally, induction of apoptosis by TQ was assessed by Giemsa staining and TQ was found to induce apoptosis in cancer cells especially at concentrations of 50 and 100 μM. TQ-mediated transcriptional regulation of 84 genes involved in apoptosis was studied using a PCR array. At low dose (12.5 μM), TQ was found to induce expression of four pro-apoptotic genes: BIK (~22.7-fold), FASL (~2.9-fold), BCL2L10 (~2.1-fold), and CASP1 (~2-fold). TQ was also found to reduce the expression of an anti-apoptotic gene implicated in NF-kappa-B signaling and cancer: RELA (~8-fold). At high dose (100 μM), TQ mediated the expression of 21 genes implicated directly in apoptosis (6 genes), TNF signaling (10 genes), and NF-kappa-B signaling (3 genes) such as BIK, BID, TNFRSF10A, TNFRSF10B, TNF, TRAF3, RELA, and RELB. In conclusion, this study implicates the role of TQ in the inhibition of cancer cell proliferation and migration. At the same time, our results strongly suggest that TQ intervenes with TNF and NF-kappa-B signaling during TQ-mediated induction of apoptosis in cancer cells.

Journal ArticleDOI
TL;DR: The results suggest that thymoquinone produces a protective mechanism against CP-induced pulmonary damage and suggest a role of oxidative stress and inflammation in the pathogenesis.
Abstract: Objective Antioxidant therapy may be useful in diseases with impaired oxidant–antioxidant balance. This study was designed to examine the effects of thymoquinone (TQ), an anti-inflammatory, antioxidant agent against cyclophosphamide (CP)-induced pulmonary oxidative damage.

Journal ArticleDOI
TL;DR: In this paper, the authors reported synthesis and characterization of novel TQ analogs appended with gallate and fluorogallate pharmacophores and evaluation of their effects against pancreatic cancer cell lines for cell viability and induction of apoptosis.

Journal ArticleDOI
TL;DR: Results of this study strongly indicated protective effect of TQ and thus, can be expected as promising protective agent in maintenance of normal hepatic function during treatment with ATD.