scispace - formally typeset
Search or ask a question

Showing papers on "Turbulence published in 2002"


Journal ArticleDOI
TL;DR: In this paper, the authors present the full cavitation model, which accounts for all the first-order effects of cavitation and is called as the full-cavitation model and the phase change rate expressions are derived from a reduced form of Rayleigh-Plesset equation for bubble dynamics.
Abstract: Cavitating flows entail phase change and hence very large and steep density variations in the low pressure regions. These are also very sensitive to: (a) the formation and transport of vapor bubbles, (b) the turbulent fluctuations of pressure and velocity, and (c) the magnitude of noncondensible gases, which are dissolved or ingested in the operating liquid. The presented cavitation model accounts for all these first-order effects, and thus is named as the full cavitation model. The phase-change rate expressions are derived from a reduced form of Rayleigh-Plesset equation for bubble dynamics. These rates depend upon local flow conditions (pressure, velocities, turbulence) as well as fluid properties (saturation pressure, densities, and surface tension). The rate expressions employ two empirical constants, which have been calibrated with experimental data covering a very wide range of flow conditions, and do not require adjustments for different problems. The model has been implemented in an advanced, commercial, general-purpose CFD code, CFD-ACE+

1,329 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a new mechanism for generation of near-wall streamwise vortices, which dominate turbulence phenomena in boundary layers, using linear perturbation analysis and direct numerical simulations of turbulent channel flow.
Abstract: We present a new mechanism for generation of near-wall streamwise vortices – which dominate turbulence phenomena in boundary layers – using linear perturbation analysis and direct numerical simulations of turbulent channel flow. The base flow, consisting of the mean velocity profile and low-speed streaks (free from any initial vortices), is shown to be linearly unstable to sinuous normal modes only for relatively strong streaks, i.e. for wall inclination angles of streak vortex lines exceeding 50°. Analysis of streaks extracted from fully developed near-wall turbulence indicates that about 20% of streak regions in the buffer layer exceed the strength threshold for instability. More importantly, these unstable streaks exhibit only moderate (twofold) normal-mode amplification, the growth being arrested by self-annihilation of streak-flank normal vorticity due to viscous cross-diffusion. We present here an alternative, streak transient growth (STG) mechanism, capable of producing much larger (tenfold) linear ampliflcation of x-dependent disturbances. Note the distinction of STG – responsible for perturbation growth on a streak velocity distribution U(y, z) – from prior transient growth analyses of the (streakless) mean velocity U(y). We reveal that streamwise vortices are generated from the more numerous normal-mode-stable streaks, via a new STG-based scenario: (i) transient growth of perturbations leading to formation of a sheet of streamwise vorticity ωx (by a ‘shearing’ mechanism of vorticity generation), (ii) growth of sinuous streak waviness and hence ∂u/∂x as STG reaches nonlinear amplitude, and (iii) the ωx sheet’s collapse via stretching by ∂u/∂x (rather than rollup) into streamwise vortices. Significantly, the three-dimensional features of the (instantaneous) streamwise vortices of x-alternating sign generated by STG agree well with the (ensemble-averaged) coherent structures educed from fully turbulent flow. The STG-induced formation of internal shear layers, along with quadrant Reynolds stresses and other turbulence measures, also agree well with fully developed turbulence. Results indicate the prominent – possibly dominant – role of this new, transient-growth-based vortex generation scenario, and suggest interesting possibilities for robust control of drag and heat transfer.

781 citations


01 Nov 2002
TL;DR: An efficient ghost-cell immersed boundary method (GCIBM) for simulating turbulent flows in complex geometries is presented in this paper, where a boundary condition is enforced through a ghost cell method.
Abstract: An efficient ghost-cell immersed boundary method (GCIBM) for simulating turbulent flows in complex geometries is presented. A boundary condition is enforced through a ghost cell method. The reconstruction procedure allows systematic development of numerical schemes for treating the immersed boundary while preserving the overall second-order accuracy of the base solver. Both Dirichlet and Neumann boundary conditions can be treated. The current ghost cell treatment is both suitable for staggered and non-staggered Cartesian grids. The accuracy of the current method is validated using flow past a circular cylinder and large eddy simulation of turbulent flow over a wavy surface. Numerical results are compared with experimental data and boundary-fitted grid results. The method is further extended to an existing ocean model (MITGCM) to simulate geophysical flow over a three-dimensional bump. The method is easily implemented as evidenced by our use of several existing codes.

740 citations


Journal ArticleDOI
12 Sep 2002-Nature
TL;DR: It is concluded that air turbulence can substantially accelerate the appearance of large droplets that trigger rain.
Abstract: Vapour condensation in cloud cores produces small droplets that are close to one another in size. Droplets are believed to grow to raindrop size by coalescence due to collision. Air turbulence is thought to be the main cause for collisions of similar-sized droplets exceeding radii of a few micrometres, and therefore rain prediction requires a quantitative description of droplet collision in turbulence. Turbulent vortices act as small centrifuges that spin heavy droplets out, creating concentration inhomogeneities and jets of droplets, both of which increase the mean collision rate. Here we derive a formula for the collision rate of small heavy particles in a turbulent flow, using a recently developed formalism for tracing random trajectories. We describe an enhancement of inertial effects by turbulence intermittency and an interplay between turbulence and gravity that determines the collision rate. We present a new mechanism, the 'sling effect', for collisions due to jets of droplets that become detached from the air flow. We conclude that air turbulence can substantially accelerate the appearance of large droplets that trigger rain.

615 citations


Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that the flow structure within and just above an unconfined canopy more strongly resembles a mixing layer than a boundary layer, and demonstrate the applicability of the mixing layer analogy to aquatic systems.
Abstract: [1] To date, flow through submerged aquatic vegetation has largely been viewed as perturbed boundary layer flow, with vegetative drag treated as an extension of bed drag. However, recent studies of terrestrial canopies demonstrate that the flow structure within and just above an unconfined canopy more strongly resembles a mixing layer than a boundary layer. This paper presents laboratory measurements, obtained from a scaled seagrass model, that demonstrate the applicability of the mixing layer analogy to aquatic systems. Specifically, all vertical profiles of mean velocity contained an inflection point, which makes the flow susceptible to Kelvin-Helmholtz instability. This instability leads to the generation of large, coherent vortices within the mixing layer (observed in the model at frequencies between 0.01 and 0.11 Hz), which dominate the vertical transport of momentum through the layer. The downstream advection of these vortices is shown to cause the progressive, coherent waving of aquatic vegetation, known as the monami. When the monami is present, the turbulent vertical transport of momentum is enhanced, with turbulent stresses penetrating an additional 30% of the plant height into the canopy.

592 citations


Journal ArticleDOI
TL;DR: In this article, a simple expression is derived of the componential contributions that different dynamical effects make to the frictional drag in turbulent channel, pipe and plane boundary layer flows, which is used for an analysis of the drag modification by the opposition control and by the uniform wall blowing/suction.
Abstract: A simple expression is derived of the componential contributions that different dynamical effects make to the frictional drag in turbulent channel, pipe and plane boundary layer flows. The local skin friction can be decomposed into four parts, i.e., laminar, turbulent, inhomogeneous and transient components, the second of which is a weighted integral of the Reynolds stress distribution. It is reconfirmed that the near-wall Reynolds stress is primarily important for the prediction and control of wall turbulence. As an example, the derived expression is used for an analysis of the drag modification by the opposition control and by the uniform wall blowing/suction.

556 citations


Journal ArticleDOI
TL;DR: In this article, the authors have confirmed the strong three-dimensionalality of turbulent flow inthe roughness sublayer and the depths of the inertial sublayer (log-law region) and roughness subslayers for each surface have been determined.
Abstract: In this study, comprehensive measurements over a number of urban-type surfaces with the same area density of 25% have been performed in a wind tunnel. The experiments were conducted at a free stream velocity of 10 m s-1 and the main instrumentation was 120 ° x-wire anemometry, but measurement accuracy was checked using laser Doppler anemometry.The results haveconfirmed the strong three-dimensionalityof the turbulent flow inthe roughness sublayer and the depths of the inertial sublayer (log-law region) and roughness sublayer for each surface have been determined. Spatial averaging has been used to remove the variability of the flow in the roughness sublayer due to individual obstacles and it is shown that the spatially averaged mean velocity in the inertial sublayer and roughness sublayer can,together, be described by a single log-law with a mean zero-plane displacement and roughness length for the surface, provided that the proper surface stress is known. The spatially averaged shear stresses in the inertial sublayer and roughness sublayer are compared with the surface stress deduced from form drag measurements on the roughness elements themselves. The dispersive stress arising from the spatial inhomogeneity in the mean flow profiles was deduced from the data and is shown to be negligible compared with the usual Reynolds stresses in the roughness sublayer. Comparisons have been made between a homogeneous (regular element array) surface and one consisting of random height elements of the same total volume. Although the upper limits of the inertial sublayer for both surfaces were almost identical at equivalent fetch, the roughness sublayer was much thicker for the random surface than for the uniform surface, the friction velocity and the roughness length were significantly larger and the `roughness efficiency' was greater. It is argued that the inertial sublayer may not exist at all in some of the more extreme rough urban areas. These results will provide fundamental information for modelling urban air quality and forecasting urban wind climates.

547 citations


Journal ArticleDOI
TL;DR: In this article, a model of turbulent sub-grid scale flame speed for premixed combustion is proposed and tested in Large Eddy Simulation (LES), based on writing the unresolved flame surface density in terms of a general power-law expression that involves an inner cutoff scale.

510 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used silicon strip detectors (originally developed for the CLEO III high-energy particle physics experiment) to measure fluid particle trajectories in turbulence with temporal resolution of up to 70000 frames per second.
Abstract: We use silicon strip detectors (originally developed for the CLEO III high-energy particle physics experiment) to measure fluid particle trajectories in turbulence with temporal resolution of up to 70000 frames per second. This high frame rate allows the Kolmogorov time scale of a turbulent water flow to be fully resolved for 140 [ges ] Rλ [ges ] 970. Particle trajectories exhibiting accelerations up to 16000 m s −2 (40 times the r.m.s. value) are routinely observed. The probability density function of the acceleration is found to have Reynolds-number-dependent stretched exponential tails. The moments of the acceleration distribution are calculated. The scaling of the acceleration component variance with the energy dissipation is found to be consistent with the results for low-Reynolds-number direct numerical simulations, and with the K41-based Heisenberg–Yaglom prediction for Rλ [ges ] 500. The acceleration flatness is found to increase with Reynolds number, and to exceed 60 at Rλ = 970. The coupling of the acceleration to the large-scale anisotropy is found to be large at low Reynolds number and to decrease as the Reynolds number increases, but to persist at all Reynolds numbers measured. The dependence of the acceleration variance on the size and density of the tracer particles is measured. The autocorrelation function of an acceleration component is measured, and is found to scale with the Kolmogorov time τη.

473 citations


Journal ArticleDOI
TL;DR: In addition to the operational limits imposed by MHD stability on plasma current and pressure, an independent limit on plasma density is observed in confined toroidal plasmas as mentioned in this paper, where all toroidal confinement devices considered operate in similar ranges of (suitably normalized) densities.
Abstract: In addition to the operational limits imposed by MHD stability on plasma current and pressure, an independent limit on plasma density is observed in confined toroidal plasmas. This review attempts to summarize recent work on the phenomenology and physics of the density limit. Perhaps the most surprising result is that all of the toroidal confinement devices considered operate in similar ranges of (suitably normalized) densities. The empirical scalings derived independently for tokamaks and reversed-field pinches are essentially identical, while stellarators appear to operate at somewhat higher densities with a different scaling. Dedicated density limit experiments have not been carried out for spheromaks and field-reversed configurations, however, `optimized' discharges in these devices are also well characterized by the same empirical law. In tokamaks, where the most extensive studies have been conducted, there is strong evidence linking the limit to physics near the plasma boundary: thus, it is possible to extend the operational range for line-averaged density by operating with peaked density profiles. Additional particles in the plasma core apparently have no effect on density limit physics. While there is no widely accepted, first principles model for the density limit, research in this area has focussed on mechanisms which lead to strong edge cooling. Theoretical work has concentrated on the consequences of increased impurity radiation which may dominate power balance at high densities and low temperatures. These theories are not entirely satisfactory as they require assumptions about edge transport and make predictions for power and impurity scaling that may not be consistent with experimental results. A separate thread of research looks for the cause in collisionality enhanced turbulent transport. While there is experimental and theoretical support for this approach, understanding of the underlying mechanisms is only at a rudimentary stage and no predictive capability is yet available.

469 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the available information on two-dimensional turbulence, emphasizing on aspects accessible to experiment, and outlining contributions made on simple flow configurations, and open questions are made explicit.

Journal ArticleDOI
TL;DR: In this article, the authors analyze three-dimensional numerical simulations of driven incompressible magnetohydrodynamic (MHD) turbulence in a periodic box threaded by a moderately strong external magnetic field.
Abstract: We analyze three-dimensional numerical simulations of driven incompressible magnetohydrodynamic (MHD) turbulence in a periodic box threaded by a moderately strong external magnetic field. We sum over nonlinear interactions within Fourier wave bands and find that the timescale for the energy cascade is consistent with the Goldreich-Sridhar model of strong MHD turbulence. Using higher order longitudinal structure functions, we show that the turbulent motions in the plane perpendicular to the local mean magnetic field are similar to ordinary hydrodynamic turbulence, while motions parallel to the field are consistent with a scaling correction that arises from the eddy anisotropy. We present the structure tensor describing velocity statistics of Alfvenic and pseudo-Alfvenic turbulence. Finally, we confirm that an imbalance of energy moving up and down magnetic field lines leads to a slow decay of turbulent motions, and speculate that this imbalance is common in the interstellar medium, where injection of energy is intermittent both in time and space.

Journal ArticleDOI
TL;DR: In this article, it was shown that the global, in time, regularity of the three dimensional viscous Camassa-Holm (Navier-Stokes-alpha) (NS-α) equations is bounded by (L/l�� ∈ )3, where L is a typical large spatial scale (e.g., the size of the domain).
Abstract: We show here the global, in time, regularity of the three dimensional viscous Camassa–Holm (Navier–Stokes-alpha) (NS-α) equations. We also provide estimates, in terms of the physical parameters of the equations, for the Hausdorff and fractal dimensions of their global attractor. In analogy with the Kolmogorov theory of turbulence, we define a small spatial scale, l ∈ , as the scale at which the balance occurs in the mean rates of nonlinear transport of energy and viscous dissipation of energy. Furthermore, we show that the number of degrees of freedom in the long-time behavior of the solutions to these equations is bounded from above by (L/l ∈ )3, where L is a typical large spatial scale (e.g., the size of the domain). This estimate suggests that the Landau–Lifshitz classical theory of turbulence is suitable for interpreting the solutions of the NS-α equations. Hence, one may consider these equations as a closure model for the Reynolds averaged Navier–Stokes equations (NSE). We study this approach, further, in other related papers. Finally, we discuss the relation of the NS-α model to the NSE by proving a convergence theorem, that as the length scale α 1 tends to zero a subsequence of solutions of the NS-α equations converges to a weak solution of the three dimensional NSE.

Journal ArticleDOI
TL;DR: In this article, velocity field statistics in the inertial to dissipation range of three-dimensional homogeneous steady turbulent flow are studied using a high-resolution DNS with up to N=10243 grid points.
Abstract: Velocity field statistics in the inertial to dissipation range of three-dimensional homogeneous steady turbulent flow are studied using a high-resolution DNS with up to N=10243 grid points. The range of the Taylor microscale Reynolds number is between 38 and 460. Isotropy at the small scales of motion is well satisfied from half the integral scale (L) down to the Kolmogorov scale (η). The Kolmogorov constant is 1.64±0.04, which is close to experimentally determined values. The third order moment of the longitudinal velocity difference scales as the separation distance r, and its coefficient is close to 4/5. A clear inertial range is observed for moments of the velocity difference up to the tenth order, between 2λ≈100η and L/2≈300η, where λ is the Taylor microscale. The scaling exponents are measured directly from the structure functions; the transverse scaling exponents are smaller than the longitudinal exponents when the order is greater than four. The crossover length of the longitudinal velocity struct...

Journal ArticleDOI
TL;DR: In this paper, the authors examine the behavior of a dilute dispersion of heavy particles in a vertical channel flow, using pseudo-spectral direct numerical simulation to calculate the turbulent flow eld at a shear Reynolds number Re = 150, and Lagrangian tracking to describe the dynamics of particles.
Abstract: Particle transfer in the wall region of turbulent boundary layers is dominated by the coherent structures which control the turbulence regeneration cycle. Coherent structures bring particles toward and away from the wall and favour particle segregation in the viscous region, giving rise to non-uniform particle distribution proles which peak close to the wall. The object of this work is to understand the reasons for higher particle concentration in the wall region by examining turbulent transfer of heavy particles to and away from the wall in connection with the coherent structures of the boundary layer. We will examine the behaviour of a dilute dispersion of heavy particles { flyashes in air { in a vertical channel flow, using pseudo-spectral direct numerical simulation to calculate the turbulent flow eld at a shear Reynolds number Re = 150, and Lagrangian tracking to describe the dynamics of particles. Drag force, gravity and Saman lift are used in the equation of motion for the particles, which are assumed to have no influence on the flow eld. Particle interaction with the wall is fully elastic. As reported in several previous investigations, we found that particles are transferred by sweeps { Q2 type events { in the wall region, where they preferentially accumulate in the low-speed streak environments, whereas ejections { Q4 type events { transfer particles from the wall region to the outer flow. We quantify the eciency of the instantaneous realizations of the Reynolds stresses events in transferring different size particles to the wall and away from the wall, respectively. Our ndings conrm that sweeps and ejections are ecient transfer mechanisms for particles. In particular, we nd that only those sweep and ejection events with substantial spatial coherence are eective in transferring particles. However, the eciency of the transfer mechanisms is conditioned by the presence of particles to be transferred. In the case of ejections, particles are more rarely available since, when in the viscous wall layer, they are concentrated under the low-speed streaks. Even though the low-speed streaks are ejection-like environments, particles remain trapped for a long time. This phenomenon, which causes accumulation of particles in the near-wall region, can be interpreted in terms of overall fluxes toward and away from the wall by the theory of turbophoresis. This theory, proposed initially by Caporaloni et al. (1975) and re-examined later by Reeks (1983), can help to explain the existence of net particle fluxes toward the wall as a manifestation of the skewness in the velocity distribution of the particles (Reeks 1983). To understand the local and instantaneous mechanisms which give rise to the phenomenon of turbophoresis, we focus on the near-wall region of the turbulent boundary layer. We examine the role of the rear-end of a quasistreamwise vortex very near to the wall in preventing particles in the proximity of the wall from being re-entrained by the pumping action of the large, farther from the wall, forward-end of a following quasi-streamwise vortex. We examine several mechanisms

Book ChapterDOI
01 Jan 2002
TL;DR: In this paper, a new formulation of Detached-Eddy Simulation (DES) based on the k-ω RANS model of Menter (M-SST model) is presented, the goal being an improvement in separation prediction over the S-A model.
Abstract: A new formulation of Detached-Eddy Simulation (DES) based on the k-ω RANS model of Menter (M-SST model) is presented, the goal being an improvement in separation prediction over the S-A model. A new numerical scheme adjusted to the hybrid nature of the DES approach and the demands of complex flows is also presented. The scheme functions as a fourth-order centered differentiation in the LES regions of DES and as an upwind-biased (fifth or third order) differentiation in the RANS and outer irrotational flow regions. The capabilities of both suggested upgrades in DES are evaluated on a set of complex separated flows.

Journal ArticleDOI
TL;DR: In this paper, a linked set of simple equations specifically designed to calculate heat fluxes for the urban environment is presented, which has similarities to the hybrid plume dispersion model (HPDM) scheme.
Abstract: A linked set of simple equations specifically designed to calculate heat fluxes for the urban environment is presented. This local-scale urban meteorological parameterization scheme (LUMPS), which has similarities to the hybrid plume dispersion model (HPDM) scheme, requires only standard meteorological observations and basic knowledge of surface cover. LUMPS is driven by net all-wave radiation. Heat storage by the urban fabric is parameterized from net all-wave radiation and surface cover information using the objective hysteresis model (OHM). The turbulent sensible and latent heat fluxes are calculated using the available energy and are partitioned using the approach of de Bruin and Holtslag, and Holtslag and van Ulden. A new scheme to define the Holtslag and van Ulden α and β parameters for urban environments is presented; α is empirically related to the plan fraction of the surface that is vegetated or irrigated, and a new urban value of β captures the observed delay in reversal of the sign of...

Journal ArticleDOI
TL;DR: In this article, the bouncing motion of solid spheres onto a solid plate in an ambient fluid which is either a gas or a liquid was investigated and the coefficient of restitution e was measured as a function of the Stokes number, St, ratio of the particle inertia to the viscous forces.
Abstract: We investigate experimentally the bouncing motion of solid spheres onto a solid plate in an ambient fluid which is either a gas or a liquid. In particular, we measure the coefficient of restitution e as a function of the Stokes number, St, ratio of the particle inertia to the viscous forces. The coefficient e is zero at small St, increases monotonically with St above the critical value Stc and reaches an asymptotic value at high St corresponding to the classical “dry” value emax measured in air or vacuum. This behavior is observed for a large range of materials and a master curve e/emax=f(St) is obtained. If gravity is sufficient to describe the rebound trajectory (after the collision) in a gas, this is not the case in a liquid where drag and added-mass effect are important but not sufficient: History forces are shown to be non-negligible even at large Reynolds number.

Journal ArticleDOI
TL;DR: In this article, an experimental system was built to investigate convective heat transfer and flow characteristics of the nanofluid in a tube, and the effects of such factors as the volume fraction of suspended nanoparticles and the Reynolds number on the heat transfer was discussed in detail.
Abstract: An experimental system is built to investigate convective heat transfer and flow characteristics of the nanofluid in a tube. Both the convective heat transfer coefficient and friction factor of Cu-water nanofluid for the laminar and turbulent flow are measured. The effects of such factors as the volume fraction of suspended nanoparticles and the Reynolds number on the heat transfer and flow characteristics are discussed in detail. The experimental results show that the suspended nanoparticles remarkably increase the convective heat transfer coefficient of the base fluid and show that the friction factor of the sample nanofluid with the low volume fraction of nanoparticles is almost not changed. Compared with the base fluid, for example, the convective heat transfer coefficient is increased about 60% for the nanofluid with 2.0 vol% Cu nanoparticles at the same Reynolds number. Considering the factors affecting the convective heat transfer coefficient of the nanofluid, a new convective heat transfer correlation for nanofluid under single-phase flows in tubes is established. Comparison between the experimental data and the calculated results indicate that the correlation describes correctly the energy transport of the nanofluid.

Journal ArticleDOI
TL;DR: The behavior of heavy particles in isotropic, homogeneous, decaying turbulence has been experimentally studied and the settling velocity of the particles has been found to be much larger than in a quiescent fluid as mentioned in this paper.
Abstract: The behaviour of heavy particles in isotropic, homogeneous, decaying turbulence has been experimentally studied The settling velocity of the particles has been found to be much larger than in a quiescent fluid It has been determined that the enhancement of the settling velocity depends on the particle loading, increasing as the volume fraction of particles in the flow increases The spatial and temporal distribution of the particle concentration field is shown to exhibit large inhomogeneities As the particles interact with the underlying turbulence they concentrate preferentially in certain regions of the flow A characteristic dimension of these particle clusters is found to be related to the viscous scales of the flow Measurements of the settling velocity conditioned on the local concentration of particles in the flow have shown that there is a monotonic increase in the settling velocity with the local concentration (the relation being quasi-linear) A simple phenomenological model is proposed to explain this behaviour

Journal ArticleDOI
TL;DR: In this paper, a wave equation for pressure analysis of the turbulent shear layer is performed for subsonic to supersonic Mach numbers and it is found that the normalized pressure-strain term decreases with increasing Mach number, which leads to inhibited energy transfer from the streamwise to cross-stream fluctuations, to reduced turbulence production observed in DNS, and, finally, reduced turbulence levels as well as reduced growth rate of the shear layers.
Abstract: Direct simulations of the turbulent shear layer are performed for subsonic to supersonic Mach numbers. Fully developed turbulence is achieved with profiles of mean velocity and turbulence intensities that agree well with laboratory experiments. The thickness growth rate of the shear layer exhibits a large reduction with increasing values of the convective Mach number, Mc. In agreement with previous investigations, it is found that the normalized pressure–strain term decreases with increasing Mc, which leads to inhibited energy transfer from the streamwise to cross-stream fluctuations, to the reduced turbulence production observed in DNS, and, finally, to reduced turbulence levels as well as reduced growth rate of the shear layer. An analysis, based on the wave equation for pressure, with supporting DNS is performed with the result that the pressure–strain term decreases monotonically with increasing Mach number. The gradient Mach number, which is the ratio of the acoustic time scale to the flow distortion time scale, is shown explicitly by the analysis to be the key quantity that determines the reduction of the pressure–strain term in compressible shear flows. The physical explanation is that the finite speed of sound in compressible flow introduces a finite time delay in the transmission of pressure signals from one point to an adjacent point and the resultant increase in decorrelation leads to a reduction in the pressure–strain correlation.The dependence of turbulence intensities on the convective Mach number is investigated. It is found that all components decrease with increasing Mc and so does the shear stress.DNS is also used to study the effect of different free-stream densities parameterized by the density ratio, s = ρ2/ρ1, in the high-speed case. It is found that changes in the temporal growth rate of the vorticity thickness are smaller than the changes observed in momentum thickness growth rate. The momentum thickness growth rate decreases substantially with increasing departure from the reference case, s = 1. The peak value of the shear stress, uv, shows only small changes as a function of s. The dividing streamline of the shear layer is observed to move into the low-density stream. An analysis is performed to explain this shift and the consequent reduction in momentum thickness growth rate.

Journal ArticleDOI
TL;DR: In this paper, the authors review the mechanisms of steepening and breaking for internal gravity waves in a continuous density stratification and discuss the influence of those processes upon the fluid medium by mean flow changes.
Abstract: ▪ Abstract We review the mechanisms of steepening and breaking for internal gravity waves in a continuous density stratification. After discussing the instability of a plane wave of arbitrary amplitude in an infinite medium at rest, we consider the steepening effects of wave reflection on a sloping boundary and propagation in a shear flow. The final process of breaking into small-scale turbulence is then presented. The influence of those processes upon the fluid medium by mean flow changes is discussed. The specific properties of wave turbulence, induced by wave-wave interactions and breaking, are illustrated by comparative studies of oceanic and atmospheric observations, as well as laboratory and numerical experiments. We then review the different attempts at a statistical description of internal gravity wave fields, whether weakly or strongly interacting.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the characteristics and evolution of the low-level jet (LLJ) over southeastern Kansas during the 1999 Cooperative Surface-AtmosphereExchange Study (CASES-99) field campaign with an instrument complement consisting of ahigh-resolution Doppler lidar (HRDL), a 60 m instrumented tower, and a triangle of doppler mini-sodar/profiler combinations.
Abstract: Characteristics and evolution of the low-level jet (LLJ)over southeastern Kansas were investigated during the 1999 Cooperative Surface-AtmosphereExchange Study (CASES–99) field campaign with an instrument complement consisting of ahigh-resolution Doppler lidar (HRDL), a 60 m instrumented tower, and a triangle of Dopplermini-sodar/profiler combinations. Using this collection of instrumentation we determined thespeed UX, height ZX and direction DX of the LLJ. We investigate here the frequencyof occurrence, the spatial distribution, and the evolution through the night, of these LLJcharacteristics. The jet of interest in this study was that which generates the shear and turbulencebelow the jet and near the surface. This was represented by the lowest wind maximum.We found that this wind maximum, which was most often between 7 and 10 m s‐1,was often at or just below 100 m above ground level as measured by HRDL at the CASEScentral site. Over the 60 km profiler–sodararray, the topography varied by ∼100 m. The wind speed anddirection were relatively constant over this distance (with some tendency for strongerwinds at the highest site), but ZX was more variable. ZX was occasionally about equal at allthree sites, indicating that the jet was following the terrain, but more often it seemed to berelatively level, i.e., at about the same height above sea level. ZX was also more variable thanUX in the behaviour of the LLJ with time through the night, and on some nights $UX wasremarkably steady. Examples of two nights with strong turbulence below jet level were furtherinvestigated using the 60 m tower at the main CASES–99 site. Evidence of TKE increasing withheight and downward turbulent transport of TKE indicates that turbulence was primarilygenerated aloft and mixed downward, supporting the upside–down boundary layer notion in thestable boundary layer.

Journal ArticleDOI
TL;DR: In this paper, a large eddy simulation (LES) of a turbulent flow past an airfoil near stall at a chord Reynolds number of 2.1 x 10 6 is performed and compared with wind-tunnel experiments.
Abstract: A large eddy simulation (LES) of a turbulent flow past an airfoil near stall at a chord Reynolds number of 2.1 x 10 6 is performed and compared with wind-tunnel experiments. This configuration still constitutes a challenging test case for Reynolds-averaged Navier-Stokes (RANS) simulation and LES as a result of the complexity of the suction side boundary layer: an adverse pressure gradient creates successively a laminar separation bubble, a turbulent reattachment, and a turbulent separation near the trailing edge. To handle this high-Reynolds-number flow with LES on available supercomputers, a local mesh-refinement technique and a discretization of the convective fluxes are developed in a block-structured finite volume code to reduce the total number of grid points and the numerical dissipation acting on the small scales, respectively. Influence of subgrid scale modeling (SGS) is assessed through the comparisons of explicit selective mixed scale model (SMSM) and implicit monotone-integrated LES model results. Moreover, the solution sensitiveness to grid refinement and spanwise extent is investigated

Journal ArticleDOI
TL;DR: Similarity between biofilm morphologies in WT and mutant biofilms suggests that the dilution of signal molecules by mass transfer effects in faster flowing systems mollifies the dramatic influence of signal molecule on biofilm structure reported in previous studies.
Abstract: Biofilms were grown from wild-type (WT) Pseudomonas aeruginosa PAO1 and the cell signaling lasI mutant PAO1-JP1 under laminar and turbulent flows to investigate the relative contributions of hydrodynamics and cell signaling for biofilm formation Various biofilm morphological parameters were quantified using Image Structure Analyzer software Multivariate analysis demonstrated that both cell signaling and hydrodynamics significantly (P < 0000) influenced biofilm structure In turbulent flow, both biofilms formed streamlined patches, which in some cases developed ripple-like wave structures which flowed downstream along the surface of the flow cell In laminar flow, both biofilms formed monolayers interspersed with small circular microcolonies Ripple-like structures also formed in four out of six WT biofilms, although their velocity was approximately 10 times less than that of those that formed in the turbulent flow cells The movement of biofilm cell clusters over solid surfaces may have important clinical implications for the dissemination of biofilm subject to fluid shear, such as that found in catheters The ability of the cell signaling mutant to form biofilms in high shear flow demonstrates that signaling mechanisms are not required for the formation of strongly adhered biofilms Similarity between biofilm morphologies in WT and mutant biofilms suggests that the dilution of signal molecules by mass transfer effects in faster flowing systems mollifies the dramatic influence of signal molecules on biofilm structure reported in previous studies

Journal ArticleDOI
TL;DR: In this article, the authors present the global baroclinic instability as a source for vigorous turbulence leading to angular momentum transport in Keplerian accretion disks, and demonstrate in a global simulation that these vortices tend to form out of little background noise and to be long-lasting features.
Abstract: In this paper we present the global baroclinic instability as a source for vigorous turbulence leading to angular momentum transport in Keplerian accretion disks. We show by analytical considerations and three-dimensional radiation hydro simulations that, in particular, protoplanetary disks have a negative radial entropy gradient, which makes them baroclinic. Two-dimensional numerical simulations show that a baroclinic flow is unstable and produces turbulence. These findings are tested for numerical effects by performing a simulation with a barotropic initial condition which shows that imposed turbulence rapidly decays. The turbulence in baroclinic disks transports angular momentum outward and creates a radially inward bound accretion of matter. Potential energy is released and excess kinetic energy is dissipated. Finally the reheating of the gas supports the radial entropy gradient, forming a self consistent process. We measure accretion rates in our 2D and 3D simulations of dotM= - 1E-9 - 1E-7 Msun/yr and viscosity parameters of alpha = 1E-4 - 1E-2, which fit perfectly together and agree reasonably with observations. The turbulence creates pressure waves, Rossby waves, and vortices in the R-phi plane of the disk. We demonstrate in a global simulation that these vortices tend to form out of little background noise and to be long-lasting features, which have already been suggested to lead to the formation of planets.

Journal ArticleDOI
TL;DR: In this article, the authors studied the evolution of the magnetorotational instability in stratified accretion disks in which the ionization fraction (and therefore resistivity) varies substantially with height.
Abstract: Using numerical MHD simulations, we have studied the evolution of the magnetorotational instability in stratified accretion disks in which the ionization fraction (and therefore resistivity) varies substantially with height. This model is appropriate to dense, cold disks around protostars or dwarf nova systems which are ionized by external irradiation of cosmic rays or high-energy photons. We find the growth and saturation of the MRI occurs only in the upper layers of the disk where the magnetic Reynolds number exceeds a critical value; in the midplane the disk remains queiscent. The vertical Poynting flux into the "dead", central zone is small, however velocity fluctuations in the dead zone driven by the turbulence in the active layers generate a significant Reynolds stress in the midplane. When normalized by the thermal pressure, the Reynolds stress in the midplane never drops below about 10% of the value of the Maxwell stress in the active layers, even though the Maxwell stress in the dead zone may be orders of magnitude smaller than this. Significant mass mixing occurs between the dead zone and active layers. Fluctuations in the magnetic energy in the active layers can drive vertical oscillations of the disk in models where the ratio of the column density in the dead zone to that in the active layers is <10. These results have important implications for the global evolution of a layered disk, in particular there may be residual mass inflow in the dead layer. We discuss the effects that dust in the disk may have on our results.

Journal ArticleDOI
TL;DR: In this paper, the Karhunen-Loeve (KL) decomposition of turbulent fluctuations was used to assess the feedback control algorithms which have been proposed for reducing skin friction and the effectiveness of the existing control schemes is decreased with increasing the Reynolds number from Reτ=110 to 300.

Journal ArticleDOI
TL;DR: In this paper, a relation for the diffusivity of vertical mixing is formulated for regions where internal tides dissipate their energy as turbulence, consistent with an estimate based on microstructure observations from a mid-ocean ridge site.
Abstract: [1] Using a parameterization for internal wave energy flux in a hydrodynamic model for the tides, we estimate the global distribution of tidal energy available for enhanced turbulent mixing. A relation for the diffusivity of vertical mixing is formulated for regions where internal tides dissipate their energy as turbulence. We assume that 30 ± 10% of the internal tide energy flux dissipates as turbulence near the site of generation, consistent with an estimate based on microstructure observations from a mid-ocean ridge site. Enhanced levels of mixing are modeled to decay away from topography, in a manner consistent with these observations. Parameterized diffusivities are shown to resemble observed abyssal mixing rates, with estimated uncertainties comparable to standard errors associated with budget and microstructure methods.

Journal ArticleDOI
TL;DR: In this article, the structure and mean flow quantities of round zero-net-mass-flux (ZNMF) jets are determined by a piston oscillating in a cavity behind a circular orifice.
Abstract: This paper reports on an experimental investigation to determine the structure and mean flow quantities of round zero-net-mass-flux (ZNMF) jets. These jets are generated by a piston oscillating in a cavity behind a circular orifice. Several different flow patterns were observed with dye flow visualization and a parameter map of these was generated. Cross-correlation digital particle image velocimetry was used to measure instantaneous two-dimensional in-plane velocity fields in a plane containing the orifice axis. These velocity fields are used to investigate the existence of a self-preserving velocity profile in the far field of the ZNMF jet. The mean flow quantities and turbulent statistics of the ZNMF jets were compared with measurements for ‘equivalent’ continuous jets in the same apparatus. Phase-averaged velocity measurements were obtained in the near field of the ZNMF jets and were used to determine the radial entrainment. The out-of-plane vorticity fields were also investigated to gain an understanding of the mechanisms responsible for the difference in spreading rate of ZNMF jets compared to conventional continuous jets. A conceptual model of the ZNMF jet structure in the near field for Strouhal numbers much less than one is proposed that explains the observed behaviour of these ZNMF jets.