scispace - formally typeset
Search or ask a question

Showing papers on "Wireless published in 2019"


Journal ArticleDOI
TL;DR: Simulation results demonstrate that an IRS-aided single-cell wireless system can achieve the same rate performance as a benchmark massive MIMO system without using IRS, but with significantly reduced active antennas/RF chains.
Abstract: Intelligent reflecting surface (IRS) is a revolutionary and transformative technology for achieving spectrum and energy efficient wireless communication cost-effectively in the future. Specifically, an IRS consists of a large number of low-cost passive elements each being able to reflect the incident signal independently with an adjustable phase shift so as to collaboratively achieve three-dimensional (3D) passive beamforming without the need of any transmit radio-frequency (RF) chains. In this paper, we study an IRS-aided single-cell wireless system where one IRS is deployed to assist in the communications between a multi-antenna access point (AP) and multiple single-antenna users. We formulate and solve new problems to minimize the total transmit power at the AP by jointly optimizing the transmit beamforming by active antenna array at the AP and reflect beamforming by passive phase shifters at the IRS, subject to users’ individual signal-to-interference-plus-noise ratio (SINR) constraints. Moreover, we analyze the asymptotic performance of IRS’s passive beamforming with infinitely large number of reflecting elements and compare it to that of the traditional active beamforming/relaying. Simulation results demonstrate that an IRS-aided MIMO system can achieve the same rate performance as a benchmark massive MIMO system without using IRS, but with significantly reduced active antennas/RF chains. We also draw useful insights into optimally deploying IRS in future wireless systems.

3,045 citations


Journal ArticleDOI
TL;DR: In this paper, the authors provide a detailed overview and historical perspective on state-of-the-art solutions, and elaborate on the fundamental differences with other technologies, the most important open research issues to tackle, and the reasons why the use of reconfigurable intelligent surfaces necessitates to rethink the communication-theoretic models currently employed in wireless networks.
Abstract: The future of mobile communications looks exciting with the potential new use cases and challenging requirements of future 6th generation (6G) and beyond wireless networks. Since the beginning of the modern era of wireless communications, the propagation medium has been perceived as a randomly behaving entity between the transmitter and the receiver, which degrades the quality of the received signal due to the uncontrollable interactions of the transmitted radio waves with the surrounding objects. The recent advent of reconfigurable intelligent surfaces in wireless communications enables, on the other hand, network operators to control the scattering, reflection, and refraction characteristics of the radio waves, by overcoming the negative effects of natural wireless propagation. Recent results have revealed that reconfigurable intelligent surfaces can effectively control the wavefront, e.g., the phase, amplitude, frequency, and even polarization, of the impinging signals without the need of complex decoding, encoding, and radio frequency processing operations. Motivated by the potential of this emerging technology, the present article is aimed to provide the readers with a detailed overview and historical perspective on state-of-the-art solutions, and to elaborate on the fundamental differences with other technologies, the most important open research issues to tackle, and the reasons why the use of reconfigurable intelligent surfaces necessitates to rethink the communication-theoretic models currently employed in wireless networks. This article also explores theoretical performance limits of reconfigurable intelligent surface-assisted communication systems using mathematical techniques and elaborates on the potential use cases of intelligent surfaces in 6G and beyond wireless networks.

2,021 citations


Journal ArticleDOI
TL;DR: This paper overviews the current research efforts on smart radio environments, the enabling technologies to realize them in practice, the need of new communication-theoretic models for their analysis and design, and the long-term and open research issues to be solved towards their massive deployment.
Abstract: Future wireless networks are expected to constitute a distributed intelligent wireless communications, sensing, and computing platform, which will have the challenging requirement of interconnecting the physical and digital worlds in a seamless and sustainable manner. Currently, two main factors prevent wireless network operators from building such networks: (1) the lack of control of the wireless environment, whose impact on the radio waves cannot be customized, and (2) the current operation of wireless radios, which consume a lot of power because new signals are generated whenever data has to be transmitted. In this paper, we challenge the usual “more data needs more power and emission of radio waves” status quo, and motivate that future wireless networks necessitate a smart radio environment: a transformative wireless concept, where the environmental objects are coated with artificial thin films of electromagnetic and reconfigurable material (that are referred to as reconfigurable intelligent meta-surfaces), which are capable of sensing the environment and of applying customized transformations to the radio waves. Smart radio environments have the potential to provide future wireless networks with uninterrupted wireless connectivity, and with the capability of transmitting data without generating new signals but recycling existing radio waves. We will discuss, in particular, two major types of reconfigurable intelligent meta-surfaces applied to wireless networks. The first type of meta-surfaces will be embedded into, e.g., walls, and will be directly controlled by the wireless network operators via a software controller in order to shape the radio waves for, e.g., improving the network coverage. The second type of meta-surfaces will be embedded into objects, e.g., smart t-shirts with sensors for health monitoring, and will backscatter the radio waves generated by cellular base stations in order to report their sensed data to mobile phones. These functionalities will enable wireless network operators to offer new services without the emission of additional radio waves, but by recycling those already existing for other purposes. This paper overviews the current research efforts on smart radio environments, the enabling technologies to realize them in practice, the need of new communication-theoretic models for their analysis and design, and the long-term and open research issues to be solved towards their massive deployment. In a nutshell, this paper is focused on discussing how the availability of reconfigurable intelligent meta-surfaces will allow wireless network operators to redesign common and well-known network communication paradigms.

1,504 citations


Journal ArticleDOI
TL;DR: In this article, a comprehensive tutorial on the potential benefits and applications of UAVs in wireless communications is presented, and the important challenges and the fundamental tradeoffs in UAV-enabled wireless networks are thoroughly investigated.
Abstract: The use of flying platforms such as unmanned aerial vehicles (UAVs), popularly known as drones, is rapidly growing. In particular, with their inherent attributes such as mobility, flexibility, and adaptive altitude, UAVs admit several key potential applications in wireless systems. On the one hand, UAVs can be used as aerial base stations to enhance coverage, capacity, reliability, and energy efficiency of wireless networks. On the other hand, UAVs can operate as flying mobile terminals within a cellular network. Such cellular-connected UAVs can enable several applications ranging from real-time video streaming to item delivery. In this paper, a comprehensive tutorial on the potential benefits and applications of UAVs in wireless communications is presented. Moreover, the important challenges and the fundamental tradeoffs in UAV-enabled wireless networks are thoroughly investigated. In particular, the key UAV challenges such as 3D deployment, performance analysis, channel modeling, and energy efficiency are explored along with representative results. Then, open problems and potential research directions pertaining to UAV communications are introduced. Finally, various analytical frameworks and mathematical tools, such as optimization theory, machine learning, stochastic geometry, transport theory, and game theory are described. The use of such tools for addressing unique UAV problems is also presented. In a nutshell, this tutorial provides key guidelines on how to analyze, optimize, and design UAV-based wireless communication systems.

1,395 citations


Journal ArticleDOI
TL;DR: This paper offers the first in-depth look at the vast applications of THz wireless products and applications and provides approaches for how to reduce power and increase performance across several problem domains, giving early evidence that THz techniques are compelling and available for future wireless communications.
Abstract: Frequencies from 100 GHz to 3 THz are promising bands for the next generation of wireless communication systems because of the wide swaths of unused and unexplored spectrum. These frequencies also offer the potential for revolutionary applications that will be made possible by new thinking, and advances in devices, circuits, software, signal processing, and systems. This paper describes many of the technical challenges and opportunities for wireless communication and sensing applications above 100 GHz, and presents a number of promising discoveries, novel approaches, and recent results that will aid in the development and implementation of the sixth generation (6G) of wireless networks, and beyond. This paper shows recent regulatory and standard body rulings that are anticipating wireless products and services above 100 GHz and illustrates the viability of wireless cognition, hyper-accurate position location, sensing, and imaging. This paper also presents approaches and results that show how long distance mobile communications will be supported to above 800 GHz since the antenna gains are able to overcome air-induced attenuation, and present methods that reduce the computational complexity and simplify the signal processing used in adaptive antenna arrays, by exploiting the Special Theory of Relativity to create a cone of silence in over-sampled antenna arrays that improve performance for digital phased array antennas. Also, new results that give insights into power efficient beam steering algorithms, and new propagation and partition loss models above 100 GHz are given, and promising imaging, array processing, and position location results are presented. The implementation of spatial consistency at THz frequencies, an important component of channel modeling that considers minute changes and correlations over space, is also discussed. This paper offers the first in-depth look at the vast applications of THz wireless products and applications and provides approaches for how to reduce power and increase performance across several problem domains, giving early evidence that THz techniques are compelling and available for future wireless communications.

1,352 citations


Posted Content
TL;DR: This article addresses the key challenges in designing and implementing the new IRS-aided hybrid (with both active and passive components) wireless network, as compared to the traditional network comprising active components only.
Abstract: Although the fifth-generation (5G) technologies will significantly improve the spectrum and energy efficiency of today's wireless communication networks, their high complexity and hardware cost as well as increasingly more energy consumption are still crucial issues to be solved. Furthermore, despite that such technologies are generally capable of adapting to the space and time varying wireless environment, the signal propagation over it is essentially random and largely uncontrollable. Recently, intelligent reflecting surface (IRS) has been proposed as a revolutionizing solution to address this open issue, by smartly reconfiguring the wireless propagation environment with the use of massive low-cost, passive, reflective elements integrated on a planar surface. Specifically, different elements of an IRS can independently reflect the incident signal by controlling its amplitude and/or phase and thereby collaboratively achieve fine-grained three-dimensional (3D) passive beamforming for signal enhancement or cancellation. In this article, we provide an overview of the IRS technology, including its main applications in wireless communication, competitive advantages over existing technologies, hardware architecture as well as the corresponding new signal model. We focus on the key challenges in designing and implementing the new IRS-aided hybrid (with both active and passive components) wireless network, as compared to the traditional network comprising active components only. Furthermore, numerical results are provided to show the potential for significant performance enhancement with the use of IRS in typical wireless network scenarios.

1,316 citations


Journal ArticleDOI
TL;DR: Numerical results show that using the proposed phase shift design can achieve the maximum ergodic spectral efficiency, and a 2-bit quantizer is sufficient to ensure spectral efficiency degradation of no more than 1 bit/s/Hz.
Abstract: Large intelligent surface (LIS)-assisted wireless communications have drawn attention worldwide. With the use of low-cost LIS on building walls, signals can be reflected by the LIS and sent out along desired directions by controlling its phases, thereby providing supplementary links for wireless communication systems. In this paper, we evaluate the performance of an LIS-assisted large-scale antenna system by formulating a tight upper bound of the ergodic spectral efficiency and investigate the effect of the phase shifts on the ergodic spectral efficiency in different propagation scenarios. In particular, we propose an optimal phase shift design based on the upper bound of the ergodic spectral efficiency and statistical channel state information. Furthermore, we derive the requirement on the quantization bits of the LIS to promise an acceptable spectral efficiency degradation. Numerical results show that using the proposed phase shift design can achieve the maximum ergodic spectral efficiency, and a 2-bit quantizer is sufficient to ensure spectral efficiency degradation of no more than 1 bit/s/Hz.

717 citations


Journal ArticleDOI
TL;DR: In this article, free-space path loss models for RIS-assisted wireless communications are developed for different scenarios by studying the physics and electromagnetic nature of RISs, which reveal the relationships between the free space path loss of RIS assisted wireless communications and the distance from the transmitter/receiver to the RIS, the size of the RIS and the radiation patterns of antennas and unit cells.
Abstract: Reconfigurable intelligent surfaces (RISs) comprised of tunable unit cells have recently drawn significant attention due to their superior capability in manipulating electromagnetic waves. In particular, RIS-assisted wireless communications have the great potential to achieve significant performance improvement and coverage enhancement in a cost-effective and energy-efficient manner, by properly programming the reflection coefficients of the unit cells of RISs. In this paper, free-space path loss models for RIS-assisted wireless communications are developed for different scenarios by studying the physics and electromagnetic nature of RISs. The proposed models, which are first validated through extensive simulation results, reveal the relationships between the free-space path loss of RIS-assisted wireless communications and the distances from the transmitter/receiver to the RIS, the size of the RIS, the near-field/far-field effects of the RIS, and the radiation patterns of antennas and unit cells. In addition, three fabricated RISs (metasurfaces) are utilized to further corroborate the theoretical findings through experimental measurements conducted in a microwave anechoic chamber. The measurement results match well with the modeling results, thus validating the proposed free-space path loss models for RIS, which may pave the way for further theoretical studies and practical applications in this field.

679 citations


Journal ArticleDOI
TL;DR: This paper constitutes the first holistic tutorial on the development of ANN-based ML techniques tailored to the needs of future wireless networks and overviews how artificial neural networks (ANNs)-based ML algorithms can be employed for solving various wireless networking problems.
Abstract: In order to effectively provide ultra reliable low latency communications and pervasive connectivity for Internet of Things (IoT) devices, next-generation wireless networks can leverage intelligent, data-driven functions enabled by the integration of machine learning (ML) notions across the wireless core and edge infrastructure. In this context, this paper provides a comprehensive tutorial that overviews how artificial neural networks (ANNs)-based ML algorithms can be employed for solving various wireless networking problems. For this purpose, we first present a detailed overview of a number of key types of ANNs that include recurrent, spiking, and deep neural networks, that are pertinent to wireless networking applications. For each type of ANN, we present the basic architecture as well as specific examples that are particularly important and relevant wireless network design. Such ANN examples include echo state networks, liquid state machine, and long short term memory. Then, we provide an in-depth overview on the variety of wireless communication problems that can be addressed using ANNs, ranging from communication using unmanned aerial vehicles to virtual reality applications over wireless networks as well as edge computing and caching. For each individual application, we present the main motivation for using ANNs along with the associated challenges while we also provide a detailed example for a use case scenario and outline future works that can be addressed using ANNs. In a nutshell, this paper constitutes the first holistic tutorial on the development of ANN-based ML techniques tailored to the needs of future wireless networks.

666 citations


Journal ArticleDOI
TL;DR: This paper highlights three different energy harvester models, namely, one linear model and two nonlinear models, and shows how WIPT designs differ for each of them in single-user and multi-user deployments, and identifies the fundamental tradeoff between conveying information and power wirelessly.
Abstract: Radio waves carry both energy and information simultaneously. Nevertheless, radio-frequency (RF) transmissions of these quantities have traditionally been treated separately. Currently, the community is experiencing a paradigm shift in wireless network design, namely, unifying wireless transmission of information and power so as to make the best use of the RF spectrum and radiation as well as the network infrastructure for the dual purpose of communicating and energizing. In this paper, we review and discuss recent progress in laying the foundations of the envisioned dual purpose networks by establishing a signal theory and design for wireless information and power transmission (WIPT) and identifying the fundamental tradeoff between conveying information and power wirelessly. We start with an overview of WIPT challenges and technologies, namely, simultaneous WIPT (SWIPT), wirelessly powered communication networks (WPCNs), and wirelessly powered backscatter communication (WPBC). We then characterize energy harvesters and show how WIPT signal and system designs crucially revolve around the underlying energy harvester model. To that end, we highlight three different energy harvester models, namely, one linear model and two nonlinear models, and show how WIPT designs differ for each of them in single-user and multi-user deployments. Topics discussed include rate-energy region characterization, transmitter and receiver architectures, waveform design, modulation, beamforming and input distribution optimizations, resource allocation, and RF spectrum use. We discuss and check the validity of the different energy harvester models and the resulting signal theory and design based on circuit simulations, prototyping, and experimentation. We also point out numerous directions that are promising for future research.

556 citations


Proceedings ArticleDOI
12 May 2019
TL;DR: A novel channel estimation protocol for PIS-assisted energy transfer (PET) from a multiantenna power beacon (PB) to a single-antenna energy harvesting (EH) user is presented.
Abstract: Usage of passive intelligent surface (PIS) is emerging as a low-cost green alternative to massive antenna systems for realizing high energy beamforming (EB) gains. To maximize its realistic utility, we present a novel channel estimation (CE) protocol for PIS-assisted energy transfer (PET) from a multiantenna power beacon (PB) to a single-antenna energy harvesting (EH) user. Noting the practical limitations of PIS and EH user, all computations are carried out at PB having required active components and radio resources. Using these estimates, near-optimal analytical active and passive EB designs are respectively derived for PB and PIS, that enable efficient PET over a longer duration of coherence block. Nontrivial design insights on relative significance of array size at PIS and PB are also provided. Numerical results validating theoretical claims against the existing benchmarks demonstrate that with sufficient passive elements at PIS, we can achieve desired EB gain with reduced active array size at PB.

Journal ArticleDOI
TL;DR: In this article, the authors provide a vision for 6G that could serve a research guide in the post-5G era and suggest that human-centric mobile communications will still be the most important application of 6G and the 6G network should be human centric.
Abstract: The standardization of fifth generation (5G) communications has been completed, and the 5G network should be commercially launched in 2020. As a result, the visioning and planning of sixth generation (6G) communications has begun, with an aim to provide communication services for the future demands of the 2030s. Here we provide a vision for 6G that could serve a research guide in the post-5G era. We suggest that human-centric mobile communications will still be the most important application of 6G and the 6G network should be human centric. Thus, high security, secrecy, and privacy should be key features of 6G and should be given particular attention by the wireless research community. To support this vision, we provide a systematic framework in which potential application scenarios of 6G are anticipated and subdivided. We subsequently define key potential features of 6G and discuss the required communication technologies. We also explore the issues beyond communication technologies that could hamper research and deployment of 6G.

Posted Content
TL;DR: The fundamental differences with other technologies, the most important open research issues to tackle, and the reasons why the use of reconfigurable intelligent surfaces necessitates to rethink the communication-theoretic models currently employed in wireless networks are elaborated.
Abstract: The future of mobile communications looks exciting with the potential new use cases and challenging requirements of future 6th generation (6G) and beyond wireless networks. Since the beginning of the modern era of wireless communications, the propagation medium has been perceived as a randomly behaving entity between the transmitter and the receiver, which degrades the quality of the received signal due to the uncontrollable interactions of the transmitted radio waves with the surrounding objects. The recent advent of reconfigurable intelligent surfaces in wireless communications enables, on the other hand, network operators to control the scattering, reflection, and refraction characteristics of the radio waves, by overcoming the negative effects of natural wireless propagation. Recent results have revealed that reconfigurable intelligent surfaces can effectively control the wavefront, e.g., the phase, amplitude, frequency, and even polarization, of the impinging signals without the need of complex decoding, encoding, and radio frequency processing operations. Motivated by the potential of this emerging technology, the present article is aimed to provide the readers with a detailed overview and historical perspective on state-of-the-art solutions, and to elaborate on the fundamental differences with other technologies, the most important open research issues to tackle, and the reasons why the use of reconfigurable intelligent surfaces necessitates to rethink the communication-theoretic models currently employed in wireless networks. This article also explores theoretical performance limits of reconfigurable intelligent surface-assisted communication systems using mathematical techniques and elaborates on the potential use cases of intelligent surfaces in 6G and beyond wireless networks.

Journal ArticleDOI
TL;DR: In this paper, the authors considered both the downlink and uplink UAV communications with a ground node, namely, UAV-to-ground (U2G) and groundto-UAV (G2U) communications, respectively, subject to a potential eavesdropper on the ground.
Abstract: Unmanned aerial vehicle (UAV) communication is anticipated to be widely applied in the forthcoming fifth-generation wireless networks, due to its many advantages such as low cost, high mobility, and on-demand deployment. However, the broadcast and line-of-sight nature of air-to-ground wireless channels give rise to a new challenge on how to realize secure UAV communications with the destined nodes on the ground. This paper aims to tackle this challenge by applying the physical layer security technique. We consider both the downlink and uplink UAV communications with a ground node, namely, UAV-to-ground (U2G) and ground-to-UAV (G2U) communications, respectively, subject to a potential eavesdropper on the ground. In contrast to the existing literature on the wireless physical layer security only with the ground nodes at fixed or quasi-static locations, we exploit the high mobility of the UAV to proactively establish favorable and degraded channels for the legitimate and eavesdropping links, through its trajectory design. We formulate new problems to maximize the average secrecy rates of the U2G and G2U transmissions, by jointly optimizing the UAV’s trajectory, and the transmit power of the legitimate transmitter over a given flight period of the UAV. Although the formulated problems are non-convex, we propose iterative algorithms to solve them efficiently by applying the block coordinate descent and successive convex optimization methods. Specifically, both the transmit power and UAV trajectory are optimized, with the other being fixed in an alternating manner, until the algorithms converge. The simulation results show that the proposed algorithms can improve the secrecy rates for both U2G and G2U communications, as compared to other benchmark schemes without power control and/or trajectory optimization.

Journal ArticleDOI
TL;DR: Simulation results show that the proposed design significantly improves the secrecy communication rate for the considered setup over the case without using the IRS, and outperforms a heuristic scheme.
Abstract: An intelligent reflecting surface (IRS) can adaptively adjust the phase shifts of its reflecting units to strengthen the desired signal and/or suppress the undesired signal. In this letter, we investigate an IRS-aided secure wireless communication system where a multi-antenna access point (AP) sends confidential messages to a single-antenna user in the presence of a single-antenna eavesdropper. In particular, we consider the challenging scenario where the eavesdropping channel is stronger than the legitimate communication channel and they are also highly correlated in space. We maximize the secrecy rate of the legitimate communication link by jointly designing the AP’s transmit beamforming and the IRS’s reflect beamforming. While the resultant optimization problem is difficult to solve, we propose an efficient algorithm to obtain high-quality suboptimal solution for it by applying the alternating optimization, and semidefinite relaxation methods. Simulation results show that the proposed design significantly improves the secrecy communication rate for the considered setup over the case without using the IRS, and outperforms a heuristic scheme.

Posted Content
TL;DR: Simulation results show that the proposed joint federated learning and communication framework can improve the identification accuracy by up to 1.4%, 3.5% and 4.1%, respectively, compared to an optimal user selection algorithm with random resource allocation and a wireless optimization algorithm that minimizes the sum packet error rates of all users while being agnostic to the FL parameters.
Abstract: In this paper, the problem of training federated learning (FL) algorithms over a realistic wireless network is studied. In particular, in the considered model, wireless users execute an FL algorithm while training their local FL models using their own data and transmitting the trained local FL models to a base station (BS) that will generate a global FL model and send it back to the users. Since all training parameters are transmitted over wireless links, the quality of the training will be affected by wireless factors such as packet errors and the availability of wireless resources. Meanwhile, due to the limited wireless bandwidth, the BS must select an appropriate subset of users to execute the FL algorithm so as to build a global FL model accurately. This joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize an FL loss function that captures the performance of the FL algorithm. To address this problem, a closed-form expression for the expected convergence rate of the FL algorithm is first derived to quantify the impact of wireless factors on FL. Then, based on the expected convergence rate of the FL algorithm, the optimal transmit power for each user is derived, under a given user selection and uplink resource block (RB) allocation scheme. Finally, the user selection and uplink RB allocation is optimized so as to minimize the FL loss function. Simulation results show that the proposed joint federated learning and communication framework can reduce the FL loss function value by up to 10% and 16%, respectively, compared to: 1) An optimal user selection algorithm with random resource allocation and 2) a standard FL algorithm with random user selection and resource allocation.

Journal ArticleDOI
TL;DR: In this article, a novel concept of three-dimensional (3D) cellular networks, that integrate drone base stations (drone-BSs) and cellular-connected drone users (Drone-UEs), is introduced.
Abstract: In this paper, a novel concept of three-dimensional (3D) cellular networks, that integrate drone base stations (drone-BS) and cellular-connected drone users (drone-UEs), is introduced. For this new 3D cellular architecture, a novel framework for network planning for drone-BSs and latency-minimal cell association for drone-UEs is proposed. For network planning, a tractable method for drone-BSs’ deployment based on the notion of truncated octahedron shapes is proposed, which ensures full coverage for a given space with a minimum number of drone-BSs. In addition, to characterize frequency planning in such 3D wireless networks, an analytical expression for the feasible integer frequency reuse factors is derived. Subsequently, an optimal 3D cell association scheme is developed for which the drone-UEs’ latency, considering transmission, computation, and backhaul delays, is minimized. To this end, first, the spatial distribution of the drone-UEs is estimated using a kernel density estimation method, and the parameters of the estimator are obtained using a cross-validation method. Then, according to the spatial distribution of drone-UEs and the locations of drone-BSs, the latency-minimal 3D cell association for drone-UEs is derived by exploiting tools from an optimal transport theory. The simulation results show that the proposed approach reduces the latency of drone-UEs compared with the classical cell association approach that uses a signal-to-interference-plus-noise ratio (SINR) criterion. In particular, the proposed approach yields a reduction of up to 46% in the average latency compared with the SINR-based association. The results also show that the proposed latency-optimal cell association improves the spectral efficiency of a 3D wireless cellular network of drones.

Posted Content
TL;DR: In this paper, the authors investigated an IRS-aided secure wireless communication system where a multi-antenna access point (AP) sends confidential messages to a single antenna user in the presence of a single eavesdropper, where the eavesdropping channel is stronger than the legitimate communication channel and they are also highly correlated in space.
Abstract: An intelligent reflecting surface (IRS) can adaptively adjust the phase shifts of its reflecting units to strengthen the desired signal and/or suppress the undesired signal. In this letter, we investigate an IRS-aided secure wireless communication system where a multi-antenna access point (AP) sends confidential messages to a single-antenna user in the presence of a single-antenna eavesdropper. In particular, we consider the challenging scenario where the eavesdropping channel is stronger than the legitimate communication channel and they are also highly correlated in space. We maximize the secrecy rate of the legitimate communication link by jointly designing the AP's transmit beamforming and the IRS's reflect beamforming. While the resultant optimization problem is difficult to solve, we propose an efficient algorithm to obtain high-quality suboptimal solution for it by applying the alternating optimization and semidefinite relaxation methods. Simulation results show that the proposed design significantly improves the secrecy communication rate for the considered setup over the case without using the IRS, and outperforms a heuristic scheme.

Journal ArticleDOI
TL;DR: Increased amounts of bandwidth are required to guarantee both high-quality/high-rate wireless services (4G and 5G) and reliable sensing capabilities, such as for automotive radar, air traffic control, earth geophysical monitoring, and security applications.
Abstract: Increased amounts of bandwidth are required to guarantee both high-quality/high-rate wireless services (4G and 5G) and reliable sensing capabilities, such as for automotive radar, air traffic control, earth geophysical monitoring, and security applications. Therefore, coexistence between radar and communication systems using overlapping bandwidths has come to be a primary investigation field in recent years. Various signal processing techniques, such as interference mitigation, precoding or spatial separation, and waveform design, allow both radar and communications to share the spectrum.

Journal ArticleDOI
TL;DR: In this paper, the authors investigate the potential of massive MIMO while addressing practical deployment issues to deal with the increased back/fronthauling overhead deriving from the signal co-processing.
Abstract: Since the first cellular networks were trialled in the 1970s, we have witnessed an incredible wireless revolution. From 1G to 4G, the massive traffic growth has been managed by a combination of wider bandwidths, refined radio interfaces, and network densification, namely increasing the number of antennas per site. Due its cost-efficiency, the latter has contributed the most. Massive MIMO (multiple-input multiple-output) is a key 5G technology that uses massive antenna arrays to provide a very high beamforming gain and spatially multiplexing of users and hence increases the spectral and energy efficiency (see references herein). It constitutes a centralized solution to densify a network, and its performance is limited by the inter-cell interference inherent in its cell-centric design. Conversely, ubiquitous cell-free Massive MIMO refers to a distributed Massive MIMO system implementing coherent user-centric transmission to overcome the inter-cell interference limitation in cellular networks and provide additional macro-diversity. These features, combined with the system scalability inherent in the Massive MIMO design, distinguish ubiquitous cell-free Massive MIMO from prior coordinated distributed wireless systems. In this article, we investigate the enormous potential of this promising technology while addressing practical deployment issues to deal with the increased back/front-hauling overhead deriving from the signal co-processing.

Journal ArticleDOI
TL;DR: A novel distributed dynamic spectrum access algorithm based on deep multi-user reinforcement leaning is developed for accessing the spectrum that maximizes a certain network utility in a distributed manner without online coordination or message exchanges between users.
Abstract: We consider the problem of dynamic spectrum access for network utility maximization in multichannel wireless networks. The shared bandwidth is divided into $K$ orthogonal channels. In the beginning of each time slot, each user selects a channel and transmits a packet with a certain transmission probability. After each time slot, each user that has transmitted a packet receives a local observation indicating whether its packet was successfully delivered or not (i.e., ACK signal). The objective is a multi-user strategy for accessing the spectrum that maximizes a certain network utility in a distributed manner without online coordination or message exchanges between users. Obtaining an optimal solution for the spectrum access problem is computationally expensive, in general, due to the large-state space and partial observability of the states. To tackle this problem, we develop a novel distributed dynamic spectrum access algorithm based on deep multi-user reinforcement leaning. Specifically, at each time slot, each user maps its current state to the spectrum access actions based on a trained deep-Q network used to maximize the objective function. Game theoretic analysis of the system dynamics is developed for establishing design principles for the implementation of the algorithm. The experimental results demonstrate the strong performance of the algorithm.

Journal ArticleDOI
TL;DR: A signal processing perspective of mm-wave JRC systems with an emphasis on waveform design is provided, to exploit opportunities to exploit recent advances in cognition, compressed sensing, and machine learning to reduce required resources and dynamically allocate them with low overheads.
Abstract: Synergistic design of communications and radar systems with common spectral and hardware resources is heralding a new era of efficiently utilizing a limited radio-frequency (RF) spectrum. Such a joint radar communications (JRC) model has advantages of low cost, compact size, less power consumption, spectrum sharing, improved performance, and safety due to enhanced information sharing. Today, millimeter-wave (mmwave) communications have emerged as the preferred technology for short distance wireless links because they provide transmission bandwidth that is several gigahertz wide. This band is also promising for short-range radar applications, which benefit from the high-range resolution arising from large transmit signal bandwidths. Signal processing techniques are critical to the implementation of mm-wave JRC systems. Major challenges are joint waveform design and performance criteria that would optimally trade off between communications and radar functionalities. Novel multiple-input, multiple-output (MIMO) signal processing techniques are required because mm-wave JRC systems employ large antenna arrays. There are opportunities to exploit recent advances in cognition, compressed sensing, and machine learning to reduce required resources and dynamically allocate them with low overheads. This article provides a signal processing perspective of mm-wave JRC systems with an emphasis on waveform design.

Posted Content
TL;DR: Simulation results reveal that deploying large-scale IRSs in wireless systems is more efficient than increasing the antenna array size at the AP for enhancing both the spectral and the energy efficiency.
Abstract: Intelligent reflecting surfaces (IRSs) have received considerable attention from the wireless communications research community recently. In particular, as low-cost passive devices, IRSs enable the control of the wireless propagation environment, which is not possible in conventional wireless networks. To take full advantage of such IRS-assisted communication systems, both the beamformer at the access point (AP) and the phase shifts at the IRS need to be optimally designed. However, thus far, the optimal design is not well understood. In this paper, a point-to-point IRS-assisted multiple-input single-output (MISO) communication system is investigated. The beamformer at the AP and the IRS phase shifts are jointly optimized to maximize the spectral efficiency. Two efficient algorithms exploiting fixed point iteration and manifold optimization techniques, respectively, are developed for solving the resulting non-convex optimization problem. The proposed algorithms not only achieve a higher spectral efficiency but also lead to a lower computational complexity than the state-of-the-art approach. Simulation results reveal that deploying large-scale IRSs in wireless systems is more efficient than increasing the antenna array size at the AP for enhancing both the spectral and the energy efficiency.

DOI
15 Jun 2019
TL;DR: The reflective radio basics, including backscattering principles, backscatter communication, and reflective relay, and the fundamentals and implementations of LISA technology are introduced.
Abstract: Large intelligent surface/antennas (LISA), a two-dimensional artificial structure with a large number of reflective-surface/antenna elements, is a promising reflective radio technology to construct programmable wireless environments in a smart way. Specifically, each element of the LISA adjusts the reflection of the incident electromagnetic waves with unnatural properties, such as negative refraction, perfect absorption, and anomalous reflection, thus the wireless environments can be software-defined according to various design objectives. In this paper, we introduce the reflective radio basics, including backscattering principles, backscatter communication, reflective relay, the fundamentals and implementations of LISA technology. Then, we present an overview of the state-of-the-art research on emerging applications of LISA-aided wireless networks. Finally, the limitations, challenges, and open issues associated with LISA for future wireless applications are discussed.

Posted Content
TL;DR: This article gives a tutorial overview of the recent advances in UAV communications, with an emphasis on how to integrate UAVs into the forthcoming fifth-generation (5G) and future cellular networks.
Abstract: Unmanned aerial vehicles (UAVs) have found numerous applications and are expected to bring fertile business opportunities in the next decade. Among various enabling technologies for UAVs, wireless communication is essential and has drawn significantly growing attention in recent years. Compared to the conventional terrestrial communications, UAVs' communications face new challenges due to their high altitude above the ground and great flexibility of movement in the three-dimensional (3D) space. Several critical issues arise, including the line-of-sight (LoS) dominant UAV-ground channels and resultant strong aerial-terrestrial network interference, the distinct communication quality of service (QoS) requirements for UAV control messages versus payload data, the stringent constraints imposed by the size, weight and power (SWAP) limitations of UAVs, as well as the exploitation of the new design degree of freedom (DoF) brought by the highly controllable 3D UAV mobility. In this paper, we give a tutorial overview of the recent advances in UAV communications to address the above issues, with an emphasis on how to integrate UAVs into the forthcoming fifth-generation (5G) and future cellular networks. In particular, we partition our discussions into two promising research and application frameworks of UAV communications, namely UAV-assisted wireless communications and cellular-connected UAVs,where UAVs serve as aerial communication platforms and users, respectively. Furthermore, we point out promising directions for future research and investigation.

Posted Content
TL;DR: In this paper, the authors discuss potential technologies for 6G to enable mobile AI applications, as well as AI-enabled methodologies for the design and optimization of 6G network.
Abstract: The recent upsurge of diversified mobile applications, especially those supported by Artificial Intelligence (AI), is spurring heated discussions on the future evolution of wireless communications. While 5G is being deployed around the world, efforts from industry and academia have started to look beyond 5G and conceptualize 6G. We envision 6G to undergo an unprecedented transformation that will make it substantially different from the previous generations of wireless cellular systems. In particular, 6G will go beyond mobile Internet and will be required to support ubiquitous AI services from the core to the end devices of the network. Meanwhile, AI will play a critical role in designing and optimizing 6G architectures, protocols, and operations. In this article, we discuss potential technologies for 6G to enable mobile AI applications, as well as AI-enabled methodologies for 6G network design and optimization. Key trends in the evolution to 6G will also be discussed.

Journal ArticleDOI
27 Jun 2019
TL;DR: This work provides a comprehensive survey on the challenges, advances, and prospects of underwater optical wireless networks (UOWNs) from a layer by layer perspective which includes physical layer issues including propagation characteristics, channel modeling, and modulation techniques.
Abstract: Underwater wireless communications can be carried out through acoustic, radio frequency (RF), and optical waves. Compared to its bandwidth limited acoustic and RF counterparts, underwater optical wireless communications (UOWCs) can support higher data rates at low latency levels. However, the severe aquatic channel conditions (e.g., absorption, scattering, turbulence, etc.) pose great challenges for UOWCs and significantly reduce the attainable communication ranges, which necessitates efficient networking and localization solutions. Therefore, we provide a comprehensive survey on the challenges, advances, and prospects of underwater optical wireless networks (UOWNs) from a layer by layer perspective which includes: (1) Physical layer issues including propagation characteristics, channel modeling, and modulation techniques (2) Data link layer problems covering link configurations, link budgets, performance metrics, and multiple access schemes; (3) Network layer topics containing relaying techniques and potential routing algorithms; (4) Transport layer subjects such as connectivity, reliability, flow and congestion control; (5) Application layer goals, and (6) Localization and its impacts on UOWN layers. Finally, we outline the open research challenges and point out the prospective directions for underwater optical wireless communications, networking, and localization studies.

Posted Content
TL;DR: Emerging technologies such as artificial intelligence, terahertz communications, wireless optical technology, free-space optical network, blockchain, three-dimensional networking, quantum communications, unmanned aerial vehicles, cell-free communications, integration of wireless information and energy transfer, and big data analytics are described that can assist the 6G architecture development in guaranteeing the QoS.
Abstract: Fifth-generation (5G) communication, which has many more features than fourth-generation communication, will be officially launched very soon. A new paradigm of wireless communication, the sixth-generation (6G) system, with the full support of artificial intelligence is expected to be deployed between 2027 and 2030. In beyond 5G, there are some fundamental issues, which need to be addressed are higher system capacity, higher data rate, lower latency, and improved quality of service (QoS) compared to 5G system. This paper presents the vision of future 6G wireless communication and its network architecture. We discuss the emerging technologies such as artificial intelligence, terahertz communications, optical wireless technology, free space optic network, blockchain, three-dimensional networking, quantum communications, unmanned aerial vehicle, cell-free communications, integration of wireless information and energy transfer, integration of sensing and communication, integration of access-backhaul networks, dynamic network slicing, holographic beamforming, and big data analytics that can assist the 6G architecture development in guaranteeing the QoS. We present the expected applications with the requirements and the possible technologies for 6G communication. We also outline the possible challenges and research directions to reach this goal.

Journal ArticleDOI
02 Sep 2019-Sensors
TL;DR: A review of near and remote sensor networks in the agriculture domain is presented along with several considerations and challenges and an IoT-based smart solution for crop health monitoring is proposed, which is comprised of two modules.
Abstract: Internet of Things (IoT)-based automation of agricultural events can change the agriculture sector from being static and manual to dynamic and smart, leading to enhanced production with reduced human efforts. Precision Agriculture (PA) along with Wireless Sensor Network (WSN) are the main drivers of automation in the agriculture domain. PA uses specific sensors and software to ensure that the crops receive exactly what they need to optimize productivity and sustainability. PA includes retrieving real data about the conditions of soil, crops and weather from the sensors deployed in the fields. High-resolution images of crops are obtained from satellite or air-borne platforms (manned or unmanned), which are further processed to extract information used to provide future decisions. In this paper, a review of near and remote sensor networks in the agriculture domain is presented along with several considerations and challenges. This survey includes wireless communication technologies, sensors, and wireless nodes used to assess the environmental behaviour, the platforms used to obtain spectral images of crops, the common vegetation indices used to analyse spectral images and applications of WSN in agriculture. As a proof of concept, we present a case study showing how WSN-based PA system can be implemented. We propose an IoT-based smart solution for crop health monitoring, which is comprised of two modules. The first module is a wireless sensor network-based system to monitor real-time crop health status. The second module uses a low altitude remote sensing platform to obtain multi-spectral imagery, which is further processed to classify healthy and unhealthy crops. We also highlight the results obtained using a case study and list the challenges and future directions based on our work.

Journal ArticleDOI
TL;DR: A survey on IM is presented to provide the readers with a better understanding of its principles, advantages, and potential applications and a range of challenges and open issues on IM are discussed.
Abstract: In fifth generation wireless networks, the escalating teletraffic and energy consumption has necessitated the development of green communication techniques in order to further enhance both the system’s spectral efficiency and energy efficiency In the past few years, the novel index modulation (IM) has emerged as a promising technology that is widely employed in wireless communications In this paper, we present a survey on IM in order to provide the readers with a better understanding of its principles, advantages, and potential applications We start with a comprehensive literature review, where the concept of IM is introduced, and various existing IM schemes are classified according to their signal domains, including the frequency domain, spatial domain, time domain and channel domain Then the principles of different IM-aided systems are detailed, where the transceiver design is illustrated, followed by descriptions of typical systems and corresponding performance evaluation A range of challenges and open issues on IM are discussed before we conclude this survey