scispace - formally typeset
Search or ask a question

Showing papers by "Chao Xing published in 2020"


Journal ArticleDOI
01 Feb 2020
TL;DR: It is shown that decreasing fatty-acid oxidation extends the perinatal cardiomyocyte proliferative window and can reintroduce cell-cycle activity in adult cardiomers, and may be a viable target for cardiac regenerative therapies.
Abstract: The neonatal mammalian heart is capable of regeneration for a brief window of time after birth. However, this regenerative capacity is lost within the first week of life, which coincides with a postnatal shift from anaerobic glycolysis to mitochondrial oxidative phosphorylation, particularly towards fatty-acid utilization. Despite the energy advantage of fatty-acid beta-oxidation, cardiac mitochondria produce elevated rates of reactive oxygen species when utilizing fatty acids, which is thought to play a role in cardiomyocyte cell-cycle arrest through induction of DNA damage and activation of DNA-damage response (DDR) pathway. Here we show that inhibiting fatty-acid utilization promotes cardiomyocyte proliferation in the postnatatal heart. First, neonatal mice fed fatty-acid deficient milk showed prolongation of the postnatal cardiomyocyte proliferative window, however cell cycle arrest eventually ensued. Next, we generated a tamoxifen-inducible cardiomyocyte-specific, pyruvate dehydrogenase kinase 4 (PDK4) knockout mouse model to selectively enhance oxidation of glycolytically derived pyruvate in cardiomyocytes. Conditional PDK4 deletion resulted in an increase in pyruvate dehydrogenase activity and consequently an increase in glucose relative to fatty-acid oxidation. Loss of PDK4 also resulted in decreased cardiomyocyte size, decreased DNA damage and expression of DDR markers and an increase in cardiomyocyte proliferation. Following myocardial infarction, inducible deletion of PDK4 improved left ventricular function and decreased remodelling. Collectively, inhibition of fatty-acid utilization in cardiomyocytes promotes proliferation, and may be a viable target for cardiac regenerative therapies.

115 citations


Journal ArticleDOI
TL;DR: Gain- and loss-of-function studies revealed that RAB11B-AS1 increased breast cancer cell migration and invasion in vitro and promoted tumor angiogenesis and breast cancer distant metastasis without affecting primary tumor growth in mice.
Abstract: Hypoxia induces a vast array of long noncoding RNAs (lncRNA) in breast cancer cells, but their biological functions remain largely unknown. Here, we identified a hitherto uncharacterized hypoxia-induced lncRNA RAB11B-AS1 in breast cancer cells. RAB11B-AS1 is a natural lncRNA upregulated in human breast cancer and its expression is induced by hypoxia-inducible factor 2 (HIF2), but not HIF1, in response to hypoxia. RAB11B-AS1 enhanced the expression of angiogenic factors including VEGFA and ANGPTL4 in hypoxic breast cancer cells by increasing recruitment of RNA polymerase II. In line with increased angiogenic factors, conditioned media from RAB11B-AS1-overexpressing breast cancer cells promoted tube formation of human umbilical vein endothelial cells in vitro. Gain- and loss-of-function studies revealed that RAB11B-AS1 increased breast cancer cell migration and invasion in vitro and promoted tumor angiogenesis and breast cancer distant metastasis without affecting primary tumor growth in mice. Taken together, these findings uncover a fundamental mechanism of hypoxia-induced tumor angiogenesis and breast cancer metastasis. SIGNIFICANCE: This study reveals the molecular mechanism by which the lncRNA RAB11B-AS1 regulates hypoxia-induced angiogenesis and breast cancer metastasis, and provides new insights into the functional interaction between a lncRNA and tumor microenvironment. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/5/964/F1.large.jpg.

105 citations


Journal ArticleDOI
22 Apr 2020-Nature
TL;DR: It is reported that Hoxb13 acts as a cofactor of Meis1 in regulating cardiomyocyte maturation and cell cycle, and knockout of both proteins enables regeneration of postnatal cardiac tissue in a mouse model of heart injury.
Abstract: A major factor in the progression to heart failure in humans is the inability of the adult heart to repair itself after injury. We recently demonstrated that the early postnatal mammalian heart is capable of regeneration following injury through proliferation of preexisting cardiomyocytes1,2 and that Meis1, a three amino acid loop extension (TALE) family homeodomain transcription factor, translocates to cardiomyocyte nuclei shortly after birth and mediates postnatal cell cycle arrest3. Here we report that Hoxb13 acts as a cofactor of Meis1 in postnatal cardiomyocytes. Cardiomyocyte-specific deletion of Hoxb13 can extend the postnatal window of cardiomyocyte proliferation and reactivate the cardiomyocyte cell cycle in the adult heart. Moreover, adult Meis1-Hoxb13 double-knockout hearts display widespread cardiomyocyte mitosis, sarcomere disassembly and improved left ventricular systolic function following myocardial infarction, as demonstrated by echocardiography and magnetic resonance imaging. Chromatin immunoprecipitation with sequencing demonstrates that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and cell cycle. Finally, we show that the calcium-activated protein phosphatase calcineurin dephosphorylates Hoxb13 at serine-204, resulting in its nuclear localization and cell cycle arrest. These results demonstrate that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and proliferation and provide mechanistic insights into the link between hyperplastic and hypertrophic growth of cardiomyocytes.

61 citations


Journal ArticleDOI
TL;DR: Cancer cells express high levels of PD-L1, a ligand of the PD-1 receptor on T cells, allowing tumors to suppress T cell activity, and it is demonstrated that ISR-dependent PD- L1 translation requires the translation initiation factor eIF5B.
Abstract: Cancer cells express high levels of programmed death ligand 1 (PD-L1), a ligand of the programmed cell death protein 1 (PD-1) receptor on T cells, allowing tumors to suppress T cell activity. Clinical trials utilizing antibodies that disrupt the PD-1/PD-L1 checkpoint have yielded remarkable results, with anti-PD-1 immunotherapy approved as a first-line therapy for patients with lung cancer. We used CRISPR-based screening to identify regulators of PD-L1 in human lung cancer cells, revealing potent induction of PD-L1 upon disruption of heme biosynthesis. Impairment of heme production activates the integrated stress response, allowing bypass of inhibitory upstream open reading frames in the PD-L1 5′ untranslated region, resulting in enhanced PD-L1 translation and suppression of anti-tumor immunity. We demonstrate that integrated stress-response-dependent PD-L1 translation requires the translation initiation factor eIF5B. eIF5B overexpression, which is frequent in lung adenocarcinomas and associated with poor prognosis, is sufficient to induce PD-L1. These findings illuminate mechanisms of immune checkpoint activation and identify targets for therapeutic intervention. O’Donnell and colleagues report that activation of the integrated stress response in non-small cell lung cancer cells by impairing heme production leads to enhanced PD-L1 translation in an eIF5B-dependent manner.

59 citations


Journal ArticleDOI
TL;DR: It is demonstrated that skeletal muscle-resident macrophages originate from both embryonic hematopoietic progenitors located within the yolk sac and fetal liver as well as definitive hematopolietic stem cells Located within the bone marrow of adult mice.
Abstract: Tissue-resident macrophages can originate from embryonic or adult hematopoiesis. They play important roles in a wide range of biological processes including tissue remodeling during organogenesis, organ homeostasis, repair following injury, and immune response to pathogens. Although the origins and tissue-specific functions of resident macrophages have been extensively studied in many other tissues, they are not well characterized in skeletal muscle. In the present study, we have characterized the ontogeny of skeletal muscle-resident macrophages by lineage tracing and bone marrow transplant experiments. We demonstrate that skeletal muscle-resident macrophages originate from both embryonic hematopoietic progenitors located within the yolk sac and fetal liver as well as definitive hematopoietic stem cells located within the bone marrow of adult mice. Single-cell-based transcriptome analyses revealed that skeletal muscle-resident macrophages are distinctive from resident macrophages in other tissues as they express a distinct complement of transcription factors and are composed of functionally diverse subsets correlating to their origins. Functionally, skeletal muscle-resident macrophages appear to maintain tissue homeostasis and promote muscle growth and regeneration.

48 citations


Journal ArticleDOI
TL;DR: It is demonstrated that EGFR inhibition triggers an antiviral defense pathway in NSCLC and that a combination of EGFR TKI plus IFN-neutralizing antibody could be useful in most NSClC patients.
Abstract: EGFR inhibition is an effective treatment in the minority of non-small cell lung cancer (NSCLC) cases harboring EGFR-activating mutations, but not in EGFR wild type (EGFRwt) tumors. Here, we demonstrate that EGFR inhibition triggers an antiviral defense pathway in NSCLC. Inhibiting mutant EGFR triggers Type I IFN-I upregulation via a RIG-I-TBK1-IRF3 pathway. The ubiquitin ligase TRIM32 associates with TBK1 upon EGFR inhibition, and is required for K63-linked ubiquitination and TBK1 activation. Inhibiting EGFRwt upregulates interferons via an NF-κB-dependent pathway. Inhibition of IFN signaling enhances EGFR-TKI sensitivity in EGFR mutant NSCLC and renders EGFRwt/KRAS mutant NSCLC sensitive to EGFR inhibition in xenograft and immunocompetent mouse models. Furthermore, NSCLC tumors with decreased IFN-I expression are more responsive to EGFR TKI treatment. We propose that IFN-I signaling is a major determinant of EGFR-TKI sensitivity in NSCLC and that a combination of EGFR TKI plus IFN-neutralizing antibody could be useful in most NSCLC patients.

43 citations


Journal ArticleDOI
TL;DR: It is shown that AR locus amplification contributes to the transcriptional up-regulation of AR gene by increasing the total number of chromatin interaction modules comprising of the AR gene and its distal enhancer.
Abstract: Transcriptional dysregulation is a hallmark of prostate cancer (PCa). We mapped the RNA polymerase II-associated (RNA Pol II-associated) chromatin interactions in normal prostate cells and PCa cells. We discovered thousands of enhancer-promoter, enhancer-enhancer, as well as promoter-promoter chromatin interactions. These transcriptional hubs operate within the framework set by structural proteins - CTCF and cohesins - and are regulated by the cooperative action of master transcription factors, such as the androgen receptor (AR) and FOXA1. By combining analyses from metastatic castration-resistant PCa (mCRPC) specimens, we show that AR locus amplification contributes to the transcriptional upregulation of the AR gene by increasing the total number of chromatin interaction modules comprising the AR gene and its distal enhancer. We deconvoluted the transcription control modules of several PCa genes, notably the biomarker KLK3, lineage-restricted genes (KRT8, KRT18, HOXB13, FOXA1, ZBTB16), the drug target EZH2, and the oncogene MYC. By integrating clinical PCa data, we defined a germline-somatic interplay between the PCa risk allele rs684232 and the somatically acquired TMPRSS2-ERG gene fusion in the transcriptional regulation of multiple target genes - VPS53, FAM57A, and GEMIN4. Our studies implicate changes in genome organization as a critical determinant of aberrant transcriptional regulation in PCa.

41 citations


Journal ArticleDOI
TL;DR: Applying cIMPACT-NOW 3 criteria to 2 independent glioblastoma cohorts suggests that while histologic features may not be ideal indicators of patient survival in IDH-wildtype astrocytomas, these 3 molecular features may also be important prognostic factors in IDh- wildtype gliOBlastoma.
Abstract: IDH-wildtype glioblastoma is a relatively common malignant brain tumor in adults. These patients generally have dismal prognoses, although outliers with long survival have been noted in the literature. Recently, it has been reported that many histologically lower-grade IDH-wildtype astrocytomas have a similar clinical outcome to grade IV tumors, suggesting they may represent early or undersampled glioblastomas. cIMPACT-NOW 3 guidelines now recommend upgrading IDH-wildtype astrocytomas with certain molecular criteria (EGFR amplifications, chromosome 7 gain/10 loss, and/or TERT promoter mutations), establishing the concept of a "molecular grade IV" astrocytoma. In this report, we apply these cIMPACT-NOW 3 criteria to 2 independent glioblastoma cohorts, totaling 393 public database and institutional glioblastoma cases: 89 cases without any of the cIMPACT-NOW 3 criteria (GBM-C0) and 304 cases with one or more criteria (GBM-C1-3). In the GBM-C0 groups, there was a trend toward longer recurrence-free survival (median 12-17 vs 6-10 months), significantly longer overall survival (median 32-41 vs 15-18 months), younger age at initial diagnosis, and lower overall mutation burden compared to the GBM-C1-3 cohorts. These data suggest that while histologic features may not be ideal indicators of patient survival in IDH-wildtype astrocytomas, these 3 molecular features may also be important prognostic factors in IDH-wildtype glioblastoma.

27 citations


Journal ArticleDOI
TL;DR: It is reported that chromodomain helicase DNA-binding protein 4 (CHD4) physically interacts with α and β subunits of HIF1 and HIF2 and enhances HIF-driven transcriptional programs to promote breast cancer progression.
Abstract: Recruitment of RNA polymerase II to hypoxia-inducible factor (HIF) target genes under normoxia is a prerequisite for HIF-mediated transactivation. However, the underlying mechanism of this recruitment remains unknown. Here we report that chromodomain helicase DNA-binding protein 4 (CHD4) physically interacts with α and β subunits of HIF1 and HIF2 and enhances HIF-driven transcriptional programs to promote breast cancer progression. Loss of HIF1/2α abolished CHD4-mediated breast tumor growth in mice. In breast cancer cells under normoxia, CHD4 enrichment at HIF target gene promoters increased RNA polymerase II loading through p300. Hypoxia further promoted CHD4 binding to the chromatin via HIF1/2α, where CHD4 in turn enhanced recruitment of HIF1α, leading to HIF target gene transcription. CHD4 was upregulated and correlated with HIF target gene expression in human breast tumors; upregulation of CHD4 and other known HIF coactivators in human breast tumors was mutually exclusive. Furthermore, CHD4 was associated with poor overall survival of patients with breast cancer. Collectively, these findings reveal a new fundamental mechanism of HIF regulation in breast cancer, which has clinical relevance. SIGNIFICANCE: This study identifies CHD4 as a HIF coactivator and elucidates the fundamental mechanism underlying CHD4-mediated HIF transactivation in breast tumors.

24 citations


Journal ArticleDOI
TL;DR: A method to collect intra-operative samples of blood from an artery directly upstream and a vein directly downstream of a brain tumor, as well as samples from dorsal pedal veins of the same patients to assess human cancer metabolism is reported.
Abstract: Understanding tumor metabolism holds the promise of new insights into cancer biology, diagnosis and treatment To assess human cancer metabolism, here we report a method to collect intra-operative samples of blood from an artery directly upstream and a vein directly downstream of a brain tumor, as well as samples from dorsal pedal veins of the same patients After performing targeted metabolomic analysis, we characterize the metabolites consumed and produced by gliomas in vivo by comparing the arterial supply and venous drainage N-acetylornithine, D-glucose, putrescine, and L-acetylcarnitine are consumed in relatively large amounts by gliomas Conversely, L-glutamine, agmatine, and uridine 5-monophosphate are produced in relatively large amounts by gliomas Further we verify that D-2-hydroxyglutarate (D-2HG) is high in venous plasma from patients with isocitrate dehydrogenases1 (IDH1) mutations Through these paired comparisons, we can exclude the interpatient variation that is present in plasma samples usually taken from the cubital vein Cellular metabolism is altered in many cancer types and the advent of metabolomics has allowed us to understand more about how this is dysregulated Here, the authors report a method named CARVE to analyse the arterial supply and venous drainage of glioma patients during surgery and identify the metabolites that may be consumed and produced by the cancer

18 citations


Journal ArticleDOI
28 Apr 2020-Mbio
TL;DR: This study investigated the role played by Tir-Nck and Tir-EspFu actin polymerization pathways during the infection of epithelial cells, as well as the host transcriptional response to the AE lesion formation induced by EPEC and found that EspFu-mediated actin assembly promotes bacterial attachment and epithelial colonization more efficiently than Tir-nck.
Abstract: The translocation of effectors into the host cell through type 3 secretion systems (T3SS) is a sophisticated strategy employed by pathogenic bacteria to subvert host responses and facilitate colonization. Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) utilize the Tir and EspFu (also known as TccP) effectors to remodel the host cytoskeleton, culminating in the formation of attaching and effacing (AE) lesions on enterocytes. While some EPEC strains require tyrosine phosphorylation of Tir and recruitment of the host Nck to trigger actin polymerization, EHEC and certain EPEC strains, whose Tir is not phosphorylated, rely on the effector EspFu for efficient actin remodeling. Here, we investigated the role played by Tir-Nck and Tir-EspFu actin polymerization pathways during the infection of epithelial cells, as well as the host transcriptional response to the AE lesion formation induced by EPEC. We found that EspFu-mediated actin assembly promotes bacterial attachment and epithelial colonization more efficiently than Tir-Nck. Moreover, we showed that both actin polymerization mechanisms can activate inflammatory pathways and reverse the anti-inflammatory response induced by EPEC in epithelial cells. However, this activity is remarkably more evident in infections with EspFu-expressing EPEC strains. This study demonstrates the complex interactions between effector-mediated actin remodeling and inflammation. Different strains carry different combinations of these two effectors, highlighting the plasticity of pathogenic E. coli enteric infections.IMPORTANCE EPEC is among the leading causes of diarrheal disease worldwide. The colonization of the gut mucosa by EPEC results in actin pedestal formation at the site of bacterial attachment. These pedestals are referred to as attaching and effacing (AE) lesions. Here, we exploit the different molecular mechanisms used by EPEC to induce AE lesions on epithelial cells, showing that the effector EspFu is associated with increased bacterial attachment and enhanced epithelial colonization compared to the Tir-Nck pathway. Moreover, we also showed that actin pedestal formation can counterbalance the anti-inflammatory activity induced by EPEC, especially when driven by EspFu. Collectively, our findings provide new insights into virulence mechanisms employed by EPEC to colonize epithelial cells, as well as the host response to this enteric pathogen.

Journal ArticleDOI
TL;DR: RNA sequencing is used to compare tissue from individuals who are pre-symptomatic (Pre_S) to tissue from patients with late stage FECD (FECD_REP), finding gene candidates for early drivers of disease and biomarkers that may represent diagnostic and therapeutic targets for FECD.
Abstract: How genetic defects trigger the molecular changes that cause late-onset disease is important for understanding disease progression and therapeutic development. Fuchs' endothelial corneal dystrophy (FECD) is an RNA-mediated disease caused by a trinucleotide CTG expansion in an intron within the TCF4 gene. The mutant intronic CUG RNA is present at one-two copies per cell, posing a challenge to understand how a rare RNA can cause disease. Late-onset FECD is a uniquely advantageous model for studying how RNA triggers disease because: (i) Affected tissue is routinely removed during surgery; (ii) The expanded CTG mutation is one of the most prevalent disease-causing mutations, making it possible to obtain pre-symptomatic tissue from eye bank donors to probe how gene expression changes precede disease; and (iii) The affected tissue is a homogeneous single cell monolayer, facilitating accurate transcriptome analysis. Here, we use RNA sequencing (RNAseq) to compare tissue from individuals who are pre-symptomatic (Pre_S) to tissue from patients with late stage FECD (FECD_REP). The abundance of mutant repeat intronic RNA in Pre_S and FECD_REP tissue is elevated due to increased half-life in a corneal cells. In Pre_S tissue, changes in splicing and extracellular matrix gene expression foreshadow the changes observed in advanced disease and predict the activation of the fibrosis pathway and immune system seen in late-stage patients. The absolute magnitude of splicing changes is similar in pre-symptomatic and late stage tissue. Our data identify gene candidates for early drivers of disease and biomarkers that may represent diagnostic and therapeutic targets for FECD. We conclude that changes in alternative splicing and gene expression are observable decades prior to the diagnosis of late-onset trinucleotide repeat disease.

Journal ArticleDOI
TL;DR: This work identifies three unreported hemizygous missense point mutations in the X-chromosome gene Filamin A ( FLNA), the first evidence for an X-linked cause of PBS in multiple unrelated individuals and expands the phenotypic spectrum associated with FLNA in males surviving even into adulthood.
Abstract: Prune belly syndrome (PBS) is a rare, multi-system congenital myopathy primarily affecting males that is poorly described genetically. Phenotypically, its morbidity spans from mild to lethal, however, all isolated PBS cases manifest three cardinal pathological features: 1) wrinkled flaccid ventral abdominal wall with skeletal muscle deficiency, 2) urinary tract dilation with poorly contractile smooth muscle, and 3) intra-abdominal undescended testes. Despite evidence for a genetic basis, previously reported PBS autosomal candidate genes only account for one consanguineous family and single cases. We performed whole exome sequencing (WES) of two maternal adult half-brothers with syndromic PBS (PBS + Otopalatodigital spectrum disorder [OPDSD]) and two unrelated sporadic individuals with isolated PBS and further functionally validated the identified mutations. We identified three unreported hemizygous missense point mutations in the X-chromosome gene Filamin A (FLNA) (c.4952 C > T (p.A1448V), c.6727C > T (p.C2160R), c.5966 G > A (p.G2236E)) in two related cases and two unrelated sporadic individuals. Two of the three PBS mutations map to the highly regulatory, stretch-sensing Ig19–21 region of FLNA and enhance binding to intracellular tails of the transmembrane receptor β-integrin 1 (ITGβ1). FLNA is a regulatory actin-crosslinking protein that functions in smooth muscle cells as a mechanosensing molecular scaffold, transmitting force signals from the actin-myosin motor units and cytoskeleton via binding partners to the extracellular matrix. This is the first evidence for an X-linked cause of PBS in multiple unrelated individuals and expands the phenotypic spectrum associated with FLNA in males surviving even into adulthood.

Journal ArticleDOI
TL;DR: The results identify the first PPD I disease-causing variant associated with enhancing SHH expression mediated by HnRNP K, which adds to the ZRS-associated syndromes classification system for PPD and clarifies the underlying molecular mechanisms.

Journal ArticleDOI
TL;DR: SOX4, a well-known Pol II-dependent transcription factor that is critical for neurogenesis and reprogramming of somatic cells, also directly controls, unexpectedly, the expression of a subset of tRNA genes and therefore protein synthesis and proliferation of human glioblastoma cells.
Abstract: Transfer RNAs (tRNAs) are products of RNA polymerase III (Pol III) and essential for mRNA translation and ultimately cell growth and proliferation. Whether and how individual tRNA genes are specifically regulated is not clear. Here, we report that SOX4, a well-known Pol II-dependent transcription factor that is critical for neurogenesis and reprogramming of somatic cells, also directly controls, unexpectedly, the expression of a subset of tRNA genes and therefore protein synthesis and proliferation of human glioblastoma cells. Genome-wide location analysis through chromatin immunoprecipitation-sequencing uncovers specific targeting of SOX4 to a subset of tRNA genes, including those for tRNAiMet Mechanistically, sequence-specific SOX4-binding impedes the recruitment of TATA box binding protein and Pol III to tRNA genes and thereby represses their expression. CRISPR/Cas9-mediated down-regulation of tRNAiMet greatly inhibits growth and proliferation of human glioblastoma cells. Conversely, ectopic tRNAiMet partially rescues SOX4-mediated repression of cell proliferation. Together, these results uncover a regulatory mode of individual tRNA genes to control cell behavior. Such regulation may coordinate codon usage and translation efficiency to meet the demands of diverse tissues and cell types, including cancer cells.

Journal ArticleDOI
TL;DR: These studies suggest that while there is no definitive molecular signature of long survival, younger age, IDH mutation, and MGMT (methyl guanine methyl transferase) promoter hypermethylation are associated with longer overall survival, and in IDH-wildtype tumors, chromosome 19/20 co-gain and lack of EGFR amplification, chromosome 7 gain/10 loss, and TERT promoter mutation are associatedwith LTS.
Abstract: For over a century, gliomas were characterized solely by histologic features. With the publication of the WHO Classification of Tumours of the Central Nervous System, Revised 4th Edition in 2016, integrated histologic and molecular diagnosis became the norm, providing improved tumor grading and prognosis with IDH1/2 (isocitrate dehydrogenase 1 and 2) mutation being the most significant prognostic feature in all grades of adult diffuse glioma. Since then, much work has been done to identify additional molecular prognostic features, but the bulk of the progress has been made in defining aggressive features in lower grade astrocytoma. Although there have been several large case series of glioblastomas with long-term survival (LTS; overall survival ≥36 months), less is known about the clinical and molecular features of these cases. Herein, we review 19 studies examining LTS glioblastoma patients from 2009 to 2020 that include variable molecular analysis, including 465 cases with survival of 36 months or more (total n = 2328). These studies suggest that while there is no definitive molecular signature of long survival, younger age, IDH mutation, and MGMT (methyl guanine methyl transferase) promoter hypermethylation are associated with longer overall survival, and in IDH-wildtype tumors, chromosome 19/20 co-gain and lack of EGFR amplification, chromosome 7 gain/10 loss, and TERT promoter mutation are associated with LTS.

Journal ArticleDOI
TL;DR: Poor consistency in complete gene coverage was seen in the clinical exome laboratories surveyed, and the degree of consistency varied widely between the laboratories.
Abstract: Background Exome sequencing has become a commonly used clinical diagnostic test. Multiple studies have examined the diagnostic utility and individual laboratory performance of exome testing; however, no previous study has surveyed and compared the data quality from multiple clinical laboratories. Methods We examined sequencing data from 36 clinical exome tests from 3 clinical laboratories. Exome data were compared in terms of overall characteristics and coverage of specific genes and nucleotide positions. The sets of genes examined included genes in Consensus Coding Sequence (CCDS) (n = 17723), a subset of genes clinically relevant to epilepsy (n = 108), and genes that are recommended for reporting of secondary findings (n = 57; excludes X-linked genes). Results The average exome nucleotide coverage (≥20×) of each laboratory varied at 96.49% (CV = 3%), 96.54% (CV = 1%), and 91.68% (CV = 4%), for laboratories A, B, and C, respectively. For CCDS genes, the average number of completely covered genes varied at 12184 (CV = 29%), 11687 (CV = 13%), and 5989 (CV = 37%), for laboratories A, B, and C, respectively. With smaller subsets of genes related to epilepsy and secondary findings, the CV revealed low consistency, with a maximum CV seen in laboratory C for both epilepsy genes (CV = 60%) and secondary findings genes (CV = 71%). Conclusions Poor consistency in complete gene coverage was seen in the clinical exome laboratories surveyed. The degree of consistency varied widely between the laboratories.

Journal ArticleDOI
TL;DR: A gene knockout of the cellular protein NS1-BP, a constituent of the M mRNA speckle-export pathway and a binding partner of the virulence factor NS1 protein, inhibits M mRNA nuclear export without altering bulk cellular mRNA export, providing an avenue to preferentially target influenza virus.
Abstract: Influenza A viruses are human pathogens with limited therapeutic options. Therefore, it is crucial to devise strategies for the identification of new classes of antiviral medications. The influenza A virus genome is constituted of 8 RNA segments. Two of these viral RNAs are transcribed into mRNAs that are alternatively spliced. The M1 mRNA encodes the M1 protein but is also alternatively spliced to yield the M2 mRNA during infection. M1 to M2 mRNA splicing occurs at nuclear speckles, and M1 and M2 mRNAs are exported to the cytoplasm for translation. M1 and M2 proteins are critical for viral trafficking, assembly, and budding. Here we show that gene knockout of the cellular protein NS1-BP, a constituent of the M mRNA speckle-export pathway and a binding partner of the virulence factor NS1 protein, inhibits M mRNA nuclear export without altering bulk cellular mRNA export, providing an avenue to preferentially target influenza virus. We performed a high-content, image-based chemical screen using single-molecule RNA-FISH to label viral M mRNAs followed by multistep quantitative approaches to assess cellular mRNA and cell toxicity. We identified inhibitors of viral mRNA biogenesis and nuclear export that exhibited no significant activity towards bulk cellular mRNA at non-cytotoxic concentrations. Among the hits is a small molecule that preferentially inhibits nuclear export of a subset of viral and cellular mRNAs without altering bulk cellular mRNA export. These findings underscore specific nuclear export requirements for viral mRNAs and phenocopy down-regulation of the mRNA export factor UAP56. This RNA export inhibitor impaired replication of diverse influenza A virus strains at non-toxic concentrations. Thus, this screening strategy yielded compounds that alone or in combination may serve as leads to new ways of treating influenza virus infection and are novel tools for studying viral RNA trafficking in the nucleus.

Posted ContentDOI
12 Nov 2020-bioRxiv
TL;DR: In this article, an unbiased CRISPR knock-out screen was used to identify CFIm25 (NUDT21) to be a regulator of MAT2A intron detention and intracellular SAM levels.
Abstract: SUMMARY S-adenosylmethionine (SAM) is the methyl donor for nearly all cellular methylation events. Cells regulate intracellular SAM levels through intron detention of the MAT2A RNA, which encodes only SAM synthetase expressed in most cells. The N6-adenosine methyltransferase METTL16 promotes splicing of the MAT2A detained intron by an unknown mechanism. Using an unbiased CRISPR knock-out screen, we identified CFIm25 (NUDT21) to be a regulator of MAT2A intron detention and intracellular SAM levels. CFIm25 is a component of the cleavage factor Im (CFIm) complex that regulates poly(A) site selection, but we show it promotes MAT2A splicing, independent of poly(A) site selection. CFIm25-mediated MAT2A splicing induction requires the RS domains of its binding partners, CFIm68 and CFIm59 as well as binding sites in detained intron and 3′ UTR. These studies uncover mechanisms that regulate MAT2A intron detention and reveal previously undescribed roles for CFIm in splicing and SAM metabolism.


Journal ArticleDOI
TL;DR: A previously unknown requirement for SFXn3 in retinal function is described, and pathway analysis suggests that Sfxn3 may be associated with synaptic homeostasis.
Abstract: Retinal disease and loss of vision can result from any disruption of the complex pathways controlling retinal development and homeostasis. Forward genetics provides an excellent tool to find, in an unbiased manner, genes that are essential to these processes. Using N-ethyl-N-nitrosourea mutagenesis in mice in combination with a screening protocol using optical coherence tomography (OCT) and automated meiotic mapping, we identified 11 mutations presumably causative of retinal phenotypes in genes previously known to be essential for retinal integrity. In addition, we found multiple statistically significant gene-phenotype associations that have not been reported previously and decided to target one of these genes, Sfxn3 (encoding sideroflexin-3), using CRISPR/Cas9 technology. We demonstrate, using OCT, light microscopy, and electroretinography, that two Sfxn3−/− mouse lines developed progressive and severe outer retinal degeneration. Electron microscopy showed thinning of the retinal pigment epithelium and disruption of the external limiting membrane. Using single-cell RNA sequencing of retinal cells isolated from C57BL/6J mice, we demonstrate that Sfxn3 is expressed in several bipolar cell subtypes, retinal ganglion cells, and some amacrine cell subtypes but not significantly in Muller cells or photoreceptors. In situ hybridization confirmed these findings. Furthermore, pathway analysis suggests that Sfxn3 may be associated with synaptic homeostasis. Importantly, electron microscopy analysis showed disruption of synapses and synaptic ribbons in the outer plexiform layer of Sfxn3−/− mice. Our work describes a previously unknown requirement for Sfxn3 in retinal function.

Journal ArticleDOI
TL;DR: This work contends that IL‐1 can select for AR‐independent, treatment‐resistant PCa cells, and reports that the inflammatory cytokine, interleukin‐1, represses AR messenger RNA levels and activity in AR‐positive (AR+) PCa cell lines concomitant with the upregulation of prosurvival biomolecules.
Abstract: Background The androgen receptor (AR) nuclear transcription factor is a therapeutic target for prostate cancer (PCa). Unfortunately, patients can develop resistance to AR-targeted therapies and progress to lethal disease, underscoring the importance of understanding the molecular mechanisms that underlie treatment resistance. Inflammation is implicated in PCa initiation and progression and we have previously reported that the inflammatory cytokine, interleukin-1 (IL-1), represses AR messenger RNA (mRNA) levels and activity in AR-positive (AR+ ) PCa cell lines concomitant with the upregulation of prosurvival biomolecules. Thus, we contend that IL-1 can select for AR-independent, treatment-resistant PCa cells. Methods To begin to explore how IL-1 signaling leads to the repression of AR mRNA levels, we performed comprehensive pathway analysis on our RNA sequencing data from IL-1-treated LNCaP PCa cells. Our pathway analysis predicted nuclear factor kappa B (NF-κB) p65 subunit (RELA), a canonical IL-1 signal transducer, to be significantly active and potentially regulate many genes, including AR. We used small interfering RNA (siRNA) to silence the NF-κB family of transcription factor subunits, RELA, RELB, c-REL, NFKB1, or NFKB2, in IL-1-treated LNCaP, C4-2, and C4-2B PCa cell lines. C4-2 and C4-2B cell lines are castration-resistant LNCaP sublines and represent progression toward metastatic PCa disease, and we have previously shown that IL-1 represses AR mRNA levels in C4-2 and C4-2B cells. Results siRNA revealed that RELA alone is sufficient to mediate IL-1 repression of AR mRNA and AR activity. Intriguingly, while LNCaP cells are more sensitive to IL-1-mediated repression of AR than C4-2 and C4-2B cells, RELA siRNA led to a more striking derepression of AR mRNA levels and AR activity in C4-2 and C4-2B cells than in LNCaP cells. Conclusions These data indicate that there are RELA-independent mechanisms that regulate IL-1-mediated AR repression in LNCaP cells and suggest that the switch to RELA-dependent IL-1 repression of AR in C4-2 and C4-2B cells reflects changes in epigenetic and transcriptional programs that evolve during PCa disease progression.

Journal ArticleDOI
TL;DR: The heterozygous LMNA p.R349W variant in affected individuals has several distinct phenotypic features, and these patients should be classified as having multisystem progeroid syndrome (MSPS).
Abstract: Background Pathogenic variants in lamin A/C (LMNA) cause a variety of progeroid disorders including Hutchinson-Gilford progeria syndrome, mandibuloacral dysplasia, and atypical progeroid syndrome. Six families with 11 patients harboring a pathogenic heterozygous LMNA c.1045C>T; p.R349W variant have been previously reported to have partial lipodystrophy, cardiomyopathy, and focal segmental glomerulosclerosis (FSGS), suggesting a distinct progeroid syndrome. Methods We report 6 new patients with a heterozygous LMNA p.R349W variant and review the phenotype of previously reported patients to define their unique characteristics. We also performed functional studies on the skin fibroblasts of a patient to seek the underlying mechanisms of various clinical manifestations. Results Of the total 17 patients, all 14 adults with the heterozygous LMNA p.R349W variant had peculiar lipodystrophy affecting the face, extremities, palms, and soles with variable gain of subcutaneous truncal fat. All of them had proteinuric nephropathy with FSGS documented in 7 of them. Ten developed cardiomyopathy, and 2 of them died early at ages 33 and 45 years. Other common features included premature graying, alopecia, high-pitched voice, micrognathia, hearing loss, and scoliosis. Metabolic complications, including diabetes mellitus, hypertriglyceridemia, and hepatomegaly, were highly prevalent. This variant did not show any abnormal splicing, and no abnormal nuclear morphology was noted in the affected fibroblasts. Conclusions The heterozygous LMNA p.R349W variant in affected individuals has several distinct phenotypic features, and these patients should be classified as having multisystem progeroid syndrome (MSPS). MSPS patients should undergo careful assessment at symptom onset and yearly metabolic, renal, and cardiac evaluation because hyperglycemia, hypertriglyceridemia, FSGS, and cardiomyopathy cause major morbidity and mortality.

Posted ContentDOI
07 Dec 2020-medRxiv
TL;DR: In cultured cells, the P388S mutation does not alter the subcellular distribution of TulP1 or induce ER stress when compared to wild-type TULP1, but instead significantly lowers protein stability as indicated by steady-state and cycloheximide-chase experiments.
Abstract: Purpose: Retinitis pigmentosa (RP) is an inherited retinal disorder that results in the degeneration of photoreceptor cells, ultimately leading to severe visual impairment. We characterized a consanguineous family from Southern India wherein an individual in his 20s presented with night blindness since childhood. The purpose of this study was to identify the causative mutation for RP in this individual as well as characterize how the mutation may ultimately affect protein function. Methods: We performed a complete ophthalmologic examination of the proband followed by exome sequencing. The identified mutation was then modeled in cultured cells, evaluating its expression, solubility (both by western blot), subcellular distribution (confocal microscopy), and testing whether this variant induced endoplasmic reticulum (ER) stress (qPCR and western blotting). Results: The proband presented with generalized and parafoveal retinal pigment epithelial atrophy with bone spicule pigmentation in the mid periphery and arteriolar attenuation. Optical coherence tomography scans through the macula of both eyes showed atrophy of outer retinal layers with loss of the ellipsoid zone, whereas systemic examination of this individual was normal. The probands parents and sibling were asymptomatic and had normal funduscopic examinations. We discovered a novel homozygous p.Pro388Ser mutation in tubby-like protein 1 (TULP1) in the individual with RP. In cultured cells, the P388S mutation does not alter the subcellular distribution of TULP1 or induce ER stress when compared to wild-type TULP1, but instead significantly lowers protein stability as indicated by steady-state and cycloheximide-chase experiments. Conclusions: These results add to the list of known TULP1 mutations associated with RP and suggest a unique pathogenic mechanism in TULP1-induced RP, which may be shared amongst select mutations in TULP1.

Journal ArticleDOI
TL;DR: It is hypothesized that interleukin-1 confers a conserved gene expression pattern in HR+ BCa and PCa cells that mimics conserved basal gene expression patterns in HR−BCa andPCa cells to promote HR-independent survival and tumorigenicity.
Abstract: Breast (BCa) and prostate (PCa) cancers are hormone receptor (HR)-driven cancers. Thus, BCa and PCa patients are given therapies that reduce hormone levels or directly block HR activity; but most patients eventually develop treatment resistance. We have previously reported that interleukin-1 (IL-1) inflammatory cytokine downregulates ERα and AR mRNA in HR-positive (HR+) BCa and PCa cell lines, yet the cells can remain viable. Additionally, we identified pro-survival proteins and processes upregulated by IL-1 in HR+ BCa and PCa cells, that are basally high in HR− BCa and PCa cells. Therefore, we hypothesize that IL-1 confers a conserved gene expression pattern in HR+ BCa and PCa cells that mimics conserved basal gene expression patterns in HR− BCa and PCa cells to promote HR-independent survival and tumorigenicity. We performed RNA sequencing (RNA-seq) for HR+ BCa and PCa cell lines exposed to IL-1 and for untreated HR− BCa and PCa cell lines. We confirmed expression patterns of select genes by RT-qPCR and used siRNA and/or drug inhibition to silence select genes in the BCa and PCa cell lines. Finally, we performed Ingenuity Pathway Analysis (IPA) and used the gene ontology web-based tool, GOrilla, to identify signaling pathways encoded by our RNA-seq data set. We identified 350 genes in common between BCa and PCa cells that are induced or repressed by IL-1 in HR+ cells that are, respectively, basally high or low in HR− cells. Among these genes, we identified Sequestome-1 (SQSTM1/p62) and SRY (Sex-Determining Region Y)-Box 9 (SOX9) to be essential for survival of HR− BCa and PCa cell lines. Analysis of publicly available data indicates that p62 and SOX9 expression are elevated in HR-independent BCa and PCa sublines generated in vitro, suggesting that p62 and SOX9 have a role in acquired hormone receptor independence and treatment resistance. We also assessed HR− cell line viability in response to the p62-targeting drug, verteporfin, and found that verteporfin is cytotoxic for HR− cell lines. Our 350 gene set can be used to identify novel therapeutic targets and/or biomarkers conserved among acquired (e.g. due to inflammation) or intrinsic HR-independent BCa and PCa.


Journal ArticleDOI
TL;DR: A novel autosomal recessive lipodystrophy affecting two sisters aged 17 and 19 years and characterised by early onset intellectual disability, and subsequent development of near-generalised loss of subcutaneous fat with diabetes mellitus, extreme hypertriglyceridemia, hepatic steatosis, short stature, clinodactyly, joint contractures and cataracts in childhood are reported.
Abstract: Background Despite major advances in understanding the molecular basis of various genetic lipodystrophy syndromes, some rare patients still remain unexplained. Cases We report a novel autosomal recessive lipodystrophy affecting two sisters aged 17 and 19 years and characterised by early onset intellectual disability, and subsequent development of near-generalised loss of subcutaneous fat with diabetes mellitus, extreme hypertriglyceridemia, hepatic steatosis, short stature, clinodactyly, joint contractures, leiomyoma of uterus and cataracts in childhood. The lipodystrophy was more pronounced in the upper and lower extremities, and there was no associated muscular hypertrophy. Using whole exome sequencing in this consanguineous Hispanic pedigree, we report disease-causing homozygous p.Arg545His LMNA variant in the affected subjects, and confirm the lack of pathogenic variants in other known lipodystrophy genes. The mother and a younger brother were both heterozygous for p.Arg545His LMNA variant and were overweight with acanthosis nigricans without any evidence of lipodystrophy. Our patients are distinct from previously reported autosomal recessive lipodystrophy syndromes and have no overlap with other autosomal recessive laminopathies, including mandibuloacral dysplasia, Emery-Dreifuss muscular dystrophy and Charcot-Marie-Tooth neuropathy. Conclusion Our report of this unusual familial generalised lipodystrophy syndrome adds to the pleiotropy associated with biallelic autosomal recessive LMNA variants.

Journal ArticleDOI
TL;DR: In this article, the authors compared histologic and gene expression profiles of endometrium from women undergoing conventional ovarian stimulation for IVF with those undergoing minimal stimulation with clomiphene citrate (MS-IVF).
Abstract: Although it is well appreciated that ovarian stimulation protocols for in vitro fertilization (IVF) alter endometrial receptivity, the precise cellular mechanisms are not known. To gain insights into potential mechanisms by which different ovarian stimulation protocols alter the endometrium, we compared histologic and gene expression profiles of endometrium from women undergoing conventional ovarian stimulation for IVF (C-IVF) with those undergoing minimal stimulation with clomiphene citrate (MS-IVF). Sixteen women undergoing MS-IVF (n = 8) or C-IVF (n = 8) were recruited for endometrial biopsy at the time of oocyte retrieval. Endometrial glands were large, tortuous, and secretory with C-IVF but small and undifferentiated with MS-IVF. Whereas RNA sequencing did not reveal changes in estrogen receptor or its co-regulators or classic proliferation associated genes in MS-IVF, together with immunohistochemistry, Wnt signaling was disrupted in endometrium from MS-IVF cycles with significant upregulation of Wnt inhibitors. Secreted frizzled-related protein 1 (sFRP1) was increased fourfold (p < 0.01), and sFRP4 was upregulated sixfold (p < 0.01) relative to C-IVF. Further these proteins were localized to subepithelial endometrial stroma. These data indicate that MS-IVF protocols with CC do not seem to impact endometrial estrogen signaling as much as would be expected from the reported antiestrogenic properties of CC. Rather, the findings of this study highlight Wnt signaling as a major factor for endometrial development during IVF cycles.

Posted ContentDOI
26 Feb 2020-bioRxiv
TL;DR: It is concluded that changes in alternative splicing and gene expression are observable decades prior to the diagnosis of late-onset trinucleotide repeat disease.
Abstract: How genetic defects trigger the molecular changes that cause late-onset disease is important for understanding disease progression and therapeutic development. Fuchs endothelial corneal dystrophy (FECD) is an RNA-mediated disease caused by a trinucleotide CUG expansion in an intron within the TCF4 gene. The mutant intronic CUG RNA is present at 1-2 copies per cell, posing a challenge to understand how a rare RNA can cause disease. Late-onset FECD is a uniquely advantageous model for studying how RNA triggers disease because; 1) Affected tissue is routinely removed during surgery; 2) The expanded CUG mutation is one of the most prevalent disease-causing mutations, making it possible to obtain pre-symptomatic tissue from eye bank donors to probe how gene expression changes precede disease; and 3) The affected tissue is a homogeneous single cell monolayer, facilitating accurate transcriptome analysis. Here we use RNA sequencing (RNAseq) to compare tissue from individuals who are pre-symptomatic (Pre_S) to tissue from patients with late stage FECD (FECD_REP). The abundance of mutant repeat intronic RNA in Pre_S and FECD_REP tissue is elevated due to increased half-life in a corneal cell-specific manner. In Pre_S tissue, changes in splicing and extracellular matrix gene expression foreshadow the changes observed in advanced disease and predict the activation of the fibrosis pathway and immune system seen in late-stage patients. The absolute magnitude of splicing changes is similar in presymptomatic and late stage tissue. Our data identify gene candidates for early drivers of disease and biomarkers that may represent diagnostic and therapeutic targets for FECD. We conclude that changes in alternative splicing and gene expression are observable decades prior to the diagnosis of late-onset trinucleotide repeat disease.

Journal ArticleDOI
16 Dec 2020-PLOS ONE
TL;DR: Evidence is provided that chronic IL-1 exposure promotes PCa cell androgen and AR independence and, thus, supports CRPCa development.
Abstract: Chronic inflammation promotes prostate cancer (PCa) initiation and progression. We previously reported that acute intereluekin-1 (IL-1) exposure represses androgen receptor (AR) accumulation and activity, providing a possible mechanism for IL-1-mediated development of androgen- and AR-independent PCa. Given that acute inflammation is quickly resolved, and chronic inflammation is, instead, co-opted by cancer cells to promote tumorigenicity, we set out to determine if chronic IL-1 exposure leads to similar repression of AR and AR activity observed for acute IL-1 exposure and to determine if chronic IL-1 exposure selects for androgen- and AR-independent PCa cells. We generated isogenic sublines from LNCaP cells chronically exposed to IL-1α or IL-1β. Cells were treated with IL-1α, IL-1β, TNFα or HS-5 bone marrow stromal cells conditioned medium to assess cell viability in the presence of cytotoxic inflammatory cytokines. Cell viability was also assessed following serum starvation, AR siRNA silencing and enzalutamide treatment. Finally, RNA sequencing was performed for the IL-1 sublines. MTT, RT-qPCR and western blot analysis show that the sublines evolved resistance to inflammation-induced cytotoxicity and intracellular signaling and evolved reduced sensitivity to siRNA-mediated loss of AR, serum deprivation and enzalutamide. Differential gene expression reveals that canonical AR signaling is aberrant in the IL-1 sublines, where the cells show constitutive PSA repression and basally high KLK2 and NKX3.1 mRNA levels and bioinformatics analysis predicts that pro-survival and pro-tumorigenic pathways are activated in the sublines. Our data provide evidence that chronic IL-1 exposure promotes PCa cell androgen and AR independence and, thus, supports CRPCa development.