scispace - formally typeset
G

George M. Whitesides

Researcher at Harvard University

Publications -  1754
Citations -  287794

George M. Whitesides is an academic researcher from Harvard University. The author has contributed to research in topics: Monolayer & Self-assembled monolayer. The author has an hindex of 240, co-authored 1739 publications receiving 269833 citations. Previous affiliations of George M. Whitesides include University of California, Davis & University of Texas at Austin.

Papers
More filters
Journal ArticleDOI

Zwitterionic SAMs that Resist Nonspecific Adsorption of Protein from Aqueous Buffer

TL;DR: This paper describes the use of surface plasmon resonance spectroscopy and self-assembled monolayers (SAMs) of alkanethiols on gold to evaluate the ability of surfaces terminating in different combinations of charged groups to resist the nonspecific adsorption of proteins from aqueous buffer.
Journal ArticleDOI

Microfabrication meets microbiology

TL;DR: This Review summarizes methods for constructing systems and structures at micron or submicron scales that have applications in microbiology and focuses on the application of soft lithographic techniques to the study of microorganisms.
Journal ArticleDOI

Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping.

TL;DR: This method can generate topologically complex microfluidic systems and can fabricate a membrane containing a channel that crosses over and under itself, but does not intersect itself and, therefore, can be fabricated in the form of any knot.
Journal ArticleDOI

Improved pattern transfer in soft lithography using composite stamps

TL;DR: In this article, the preparation of two-layer stamps was adapted from a procedure originally developed by Schmid et al. (Macromolecules 2000, 33, 3042) for microcontact printing.
Journal ArticleDOI

Micropatterned Surfaces for Control of Cell Shape, Position, and Function

TL;DR: Progressively restricting bovine and human endothelial cell extension by culturing cells on smaller and smaller micropatterned adhesive islands regulated a transition from growth to apoptosis on a single continuum of cell spreading, thus confirming the central role of cell shape in cell function.