scispace - formally typeset
Search or ask a question

Showing papers by "Peter W. Gething published in 2016"


Journal ArticleDOI
Theo Vos1, Christine Allen1, Megha Arora1, Ryan M Barber1  +696 moreInstitutions (260)
TL;DR: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) as discussed by the authors was used to estimate the incidence, prevalence, and years lived with disability for diseases and injuries at the global, regional, and national scale over the period of 1990 to 2015.

5,050 citations


Journal ArticleDOI
Haidong Wang1, Mohsen Naghavi1, Christine Allen1, Ryan M Barber1  +841 moreInstitutions (293)
TL;DR: The Global Burden of Disease 2015 Study provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015, finding several countries in sub-Saharan Africa had very large gains in life expectancy, rebounding from an era of exceedingly high loss of life due to HIV/AIDS.

4,804 citations


01 Jan 2016
TL;DR: The comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study 2015 was used to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational risks or clusters of risks from 1990 to 2015.
Abstract: BACKGROUND The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. METHODS We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors-the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). FINDINGS Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6-58·8) of global deaths and 41·2% (39·8-42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. INTERPRETATION Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. FUNDING Bill & Melinda Gates Foundation.

3,920 citations


Journal ArticleDOI
Nicholas J Kassebaum1, Megha Arora1, Ryan M Barber1, Zulfiqar A Bhutta2  +679 moreInstitutions (268)
TL;DR: In this paper, the authors used the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2015.

1,533 citations


Journal ArticleDOI
TL;DR: In this article, the authors quantified maternal mortality throughout the world by underlying cause and age from 1990 to 2015 for ages 10-54 years by systematically compiling and processing all available data sources from 186 of 195 countries and territories.

641 citations


Journal ArticleDOI
Haidong Wang1, Zulfiqar A Bhutta2, Zulfiqar A Bhutta3, Matthew M Coates1  +610 moreInstitutions (263)
TL;DR: The Global Burden of Disease 2015 Study provides an analytical framework to comprehensively assess trends for under-5 mortality, age-specific and cause-specific mortality among children under 5 years, and stillbirths by geography over time and decomposed the changes in under- 5 mortality to changes in SDI at the global level.

591 citations


Journal ArticleDOI
Haidong Wang1, Timothy M. Wolock1, Austin Carter1, Grant Nguyen1  +497 moreInstitutions (214)
TL;DR: This report provides national estimates of levels and trends of HIV/AIDS incidence, prevalence, coverage of antiretroviral therapy (ART), and mortality for 195 countries and territories from 1980 to 2015.

522 citations


Journal ArticleDOI
Stephen S Lim1, Kate Allen1, Zulfiqar A Bhutta2, Zulfiqar A Bhutta3  +695 moreInstitutions (42)
TL;DR: The analysis of 33 health-related SDG indicators based on the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 highlights the importance of income, education, and fertility as drivers of health improvement but also emphasises that investments in these areas alone will not be sufficient.

441 citations


01 Oct 2016
TL;DR: In this article, the authors quantify maternal mortality throughout the world by underlying cause and age from 1990 to 2015, and assess the progress toward reducing maternal mortality to identify areas of success, remaining challenges, and frame policy discussions.
Abstract: Background In transitioning from the Millennium Development Goal to the Sustainable Development Goal era, it is imperative to comprehensively assess progress toward reducing maternal mortality to identify areas of success, remaining challenges, and frame policy discussions. We aimed to quantify maternal mortality throughout the world by underlying cause and age from 1990 to 2015. Methods We estimated maternal mortality at the global, regional, and national levels from 1990 to 2015 for ages 10–54 years by systematically compiling and processing all available data sources from 186 of 195 countries and territories, 11 of which were analysed at the subnational level. We quantified eight underlying causes of maternal death and four timing categories, improving estimation methods since GBD 2013 for adult all-cause mortality, HIV-related maternal mortality, and late maternal death. Secondary analyses then allowed systematic examination of drivers of trends, including the relation between maternal mortality and coverage of specific reproductive health-care services as well as assessment of observed versus expected maternal mortality as a function of Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Findings Only ten countries achieved MDG 5, but 122 of 195 countries have already met SDG 3.1. Geographical disparities widened between 1990 and 2015 and, in 2015, 24 countries still had a maternal mortality ratio greater than 400. The proportion of all maternal deaths occurring in the bottom two SDI quintiles, where haemorrhage is the dominant cause of maternal death, increased from roughly 68% in 1990 to more than 80% in 2015. The middle SDI quintile improved the most from 1990 to 2015, but also has the most complicated causal profile. Maternal mortality in the highest SDI quintile is mostly due to other direct maternal disorders, indirect maternal disorders, and abortion, ectopic pregnancy, and/or miscarriage. Historical patterns suggest achievement of SDG 3.1 will require 91% coverage of one antenatal care visit, 78% of four antenatal care visits, 81% of in-facility delivery, and 87% of skilled birth attendance. Interpretation Several challenges to improving reproductive health lie ahead in the SDG era. Countries should establish or renew systems for collection and timely dissemination of health data; expand coverage and improve quality of family planning services, including access to contraception and safe abortion to address high adolescent fertility; invest in improving health system capacity, including coverage of routine reproductive health care and of more advanced obstetric care—including EmOC; adapt health systems and data collection systems to monitor and reverse the increase in indirect, other direct, and late maternal deaths, especially in high SDI locations; and examine their own performance with respect to their SDI level, using that information to formulate strategies to improve performance and ensure optimum reproductive health of their population. Funding Bill & Melinda Gates Foundation.

357 citations


Journal ArticleDOI
TL;DR: To combat the threat of resistance, key stakeholders need to rapidly embrace a multifaceted approach including a reduction in the cost of bringing new resistance management methods to market and the streamlining of associated development, policy, and implementation pathways to counter this looming public health catastrophe.

348 citations


Journal ArticleDOI
19 Apr 2016-eLife
TL;DR: A large portion of tropical and sub-tropical regions globally have suitable environmental conditions with over 2.17 billion people inhabiting these areas, showing environmental suitability for Zika.
Abstract: Zika virus was discovered in Uganda in 1947 and is transmitted by Aedes mosquitoes, which also act as vectors for dengue and chikungunya viruses throughout much of the tropical world. In 2007, an outbreak in the Federated States of Micronesia sparked public health concern. In 2013, the virus began to spread across other parts of Oceania and in 2015, a large outbreak in Latin America began in Brazil. Possible associations with microcephaly and Guillain-Barre syndrome observed in this outbreak have raised concerns about continued global spread of Zika virus, prompting its declaration as a Public Health Emergency of International Concern by the World Health Organization. We conducted species distribution modelling to map environmental suitability for Zika. We show a large portion of tropical and sub-tropical regions globally have suitable environmental conditions with over 2.17 billion people inhabiting these areas.

Journal ArticleDOI
TL;DR: There was an overall decrease of 57% in the rate of death from malaria across sub-Saharan Africa over the past 15 years and several countries in which high rates of death were associated with low coverage of antimalarial treatment and prevention programs were identified.
Abstract: BackgroundMalaria control has not been routinely informed by the assessment of subnational variation in malaria deaths. We combined data from the Malaria Atlas Project and the Global Burden of Disease Study to estimate malaria mortality across sub-Saharan Africa on a grid of 5 km2 from 1990 through 2015. MethodsWe estimated malaria mortality using a spatiotemporal modeling framework of geolocated data (i.e., with known latitude and longitude) on the clinical incidence of malaria, coverage of antimalarial drug treatment, case fatality rate, and population distribution according to age. ResultsAcross sub-Saharan Africa during the past 15 years, we estimated that there was an overall decrease of 57% (95% uncertainty interval, 46 to 65) in the rate of malaria deaths, from 12.5 (95% uncertainty interval, 8.3 to 17.0) per 10,000 population in 2000 to 5.4 (95% uncertainty interval, 3.4 to 7.9) in 2015. This led to an overall decrease of 37% (95% uncertainty interval, 36 to 39) in the number of malaria deaths ann...

Journal ArticleDOI
TL;DR: Reaching specific policy goals, such as elimination, in defined contexts requires increasingly non-generic advice from modelling, and the results emphasize the importance of measuring baseline epidemiology, intervention coverage, vector ecology and program operational constraints in predicting expected outcomes with different combinations of interventions.
Abstract: Major gains have been made in reducing malaria transmission in many parts of the world, principally by scaling-up coverage with long-lasting insecticidal nets and indoor residual spraying. Historically, choice of vector control intervention has been largely guided by a parameter sensitivity analysis of George Macdonald's theory of vectorial capacity that suggested prioritizing methods that kill adult mosquitoes. While this advice has been highly successful for transmission suppression, there is a need to revisit these arguments as policymakers in certain areas consider which combinations of interventions are required to eliminate malaria.Using analytical solutions to updated equations for vectorial capacity we build on previous work to show that, while adult killing methods can be highly effective under many circumstances, other vector control methods are frequently required to fill effective coverage gaps. These can arise due to pre-existing or developing mosquito physiological and behavioral refractoriness but also due to additive changes in the relative importance of different vector species for transmission. Furthermore, the optimal combination of interventions will depend on the operational constraints and costs associated with reaching high coverage levels with each intervention.Reaching specific policy goals, such as elimination, in defined contexts requires increasingly non-generic advice from modelling. Our results emphasize the importance of measuring baseline epidemiology, intervention coverage, vector ecology and program operational constraints in predicting expected outcomes with different combinations of interventions.

Journal ArticleDOI
TL;DR: The global distribution of chikungunya is assessed and high-resolution maps are produced, using an established modelling framework that combines a comprehensive occurrence database with bespoke environmental correlates, including up-to-date Aedes distribution maps, to guide estimation of the global burden of CHIKV.
Abstract: Chikungunya fever is an acute febrile illness caused by the chikungunya virus (CHIKV), which is transmitted to humans by Aedes mosquitoes. Although chikungunya fever is rarely fatal, patients can experience debilitating symptoms that last from months to years. Here we comprehensively assess the global distribution of chikungunya and produce high-resolution maps, using an established modelling framework that combines a comprehensive occurrence database with bespoke environmental correlates, including up-to-date Aedes distribution maps. This enables estimation of the current total population-at-risk of CHIKV transmission and identification of areas where the virus may spread to in the future. We identified 94 countries with good evidence for current CHIKV presence and a set of countries in the New and Old World with potential for future CHIKV establishment, demonstrated by high environmental suitability for transmission and in some cases previous sporadic reports. Aedes aegypti presence was identified as one of the major contributing factors to CHIKV transmission but significant geographical heterogeneity exists. We estimated 1.3 billion people are living in areas at-risk of CHIKV transmission. These maps provide a baseline for identifying areas where prevention and control efforts should be prioritised and can be used to guide estimation of the global burden of CHIKV.

Journal ArticleDOI
TL;DR: The findings show that decreases in malaria transmission and burden can be accelerated over the next 15 years if the coverage of key interventions is increased.
Abstract: Summary Background Rapid declines in malaria prevalence, cases, and deaths have been achieved globally during the past 15 years because of improved access to first-line treatment and vector control. We aimed to assess the intervention coverage needed to achieve further gains over the next 15 years. Methods We used a mathematical model of the transmission of Plasmodium falciparum malaria to explore the potential effect on case incidence and malaria mortality rates from 2015 to 2030 of five different intervention scenarios: remaining at the intervention coverage levels of 2011–13 (Sustain), for which coverage comprises vector control and access to treatment; two scenarios of increased coverage to 80% (Accelerate 1) and 90% (Accelerate 2), with a switch from quinine to injectable artesunate for management of severe disease and seasonal malaria chemoprevention where recommended for both Accelerate scenarios, and rectal artesunate for pre-referral treatment at the community level added to Accelerate 2; a near-term innovation scenario (Innovate), which included longer-lasting insecticidal nets and expansion of seasonal malaria chemoprevention; and a reduction in coverage to 2006–08 levels (Reverse). We did the model simulations at the first administrative level (ie, state or province) for the 80 countries with sustained stable malaria transmission in 2010, accounting for variations in baseline endemicity, seasonality in transmission, vector species, and existing intervention coverage. To calculate the cases and deaths averted, we compared the total number of each under the five scenarios between 2015 and 2030 with the predicted number in 2015, accounting for population growth. Findings With an increase to 80% coverage, we predicted a reduction in case incidence of 21% (95% credible intervals [CrI] 19–29) and a reduction in mortality rates of 40% (27–61) by 2030 compared with 2015 levels. Acceleration to 90% coverage and expansion of treatment at the community level was predicted to reduce case incidence by 59% (Crl 56–64) and mortality rates by 74% (67–82); with additional near-term innovation, incidence was predicted to decline by 74% (70–77) and mortality rates by 81% (76–87). These scenarios were predicted to lead to local elimination in 13 countries under the Accelerate 1 scenario, 20 under Accelerate 2, and 22 under Innovate by 2030, reducing the proportion of the population living in at-risk areas by 36% if elimination is defined at the first administrative unit. However, failing to maintain coverage levels of 2011–13 is predicted to raise case incidence by 76% (Crl 71–80) and mortality rates by 46% (39–51) by 2020. Interpretation Our findings show that decreases in malaria transmission and burden can be accelerated over the next 15 years if the coverage of key interventions is increased. Funding UK Medical Research Council, UK Department for International Development, the Bill & Melinda Gates Foundation, the Swiss Development Agency, and the US Agency for International Development.

Journal ArticleDOI
TL;DR: This map produces the first map of P. knowlesi malaria risk, at a fine-scale resolution, to identify priority areas for surveillance based on regions with sparse data and high estimated risk, and provides an initial evidence base to better understand the spatial distribution of this disease.
Abstract: Plasmodium knowlesi is a malaria parasite found in wild monkey populations and transmitted from this animal reservoir to humans via infected mosquitoes. It causes severe and fatal disease in humans, and is the most common cause of malaria in parts of Malaysia. The geographical distribution of this disease is largely unknown because it is often misdiagnosed as one of the human malarias. Human malaria parasites are primarily transmitted between humans via mosquitoes and are not frequently transmitted from other animals to humans. Many countries in Southeast Asia, where P. knowlesi infections have been reported, are making progress towards eliminating the human malarias. Understanding the geographical distribution of P. knowlesi is important for identifying areas where malaria transmission will continue after the human malarias have been eliminated. In locations that have high volumes of P. knowlesi infection data, we modelled patterns of variation in the data linked to environmental predictors, and used this to estimate P. knowlesi infection risk in locations where data is lacking. The resulting map represents an initial evidence-base for identifying areas of human disease risk that should be prioritized for surveillance, particularly in the context of malaria elimination in the region.

Journal ArticleDOI
14 Jul 2016-eLife
TL;DR: This output represents the most up-to-date estimate of the extent of EVD zoonotic risk in Africa and demonstrates the potential for incorporating and updating data used to generate the predicted suitability map.
Abstract: As the outbreak of Ebola virus disease (EVD) in West Africa is now contained, attention is turning from control to future outbreak prediction and prevention. Building on a previously published zoonotic niche map (Pigott et al., 2014), this study incorporates new human and animal occurrence data and expands upon the way in which potential bat EVD reservoir species are incorporated. This update demonstrates the potential for incorporating and updating data used to generate the predicted suitability map. A new data portal for sharing such maps is discussed. This output represents the most up-to-date estimate of the extent of EVD zoonotic risk in Africa. These maps can assist in strengthening surveillance and response capacity to contain viral haemorrhagic fevers.

Journal ArticleDOI
TL;DR: Estimates of treatment-seeking rates show how health services are utilized and help correct reported malaria case numbers to obtain more accurate measures of disease burden.
Abstract: The proportion of individuals who seek treatment for fever is an important quantity in understanding access to and use of health systems, as well as for interpreting data on disease incidence from routine surveillance systems. For many malaria endemic countries (MECs), treatment-seeking information is available from national household surveys. The aim of this paper was to assemble sub-national estimates of treatment-seeking behaviours and to predict national treatment-seeking measures for all MECs lacking household survey data. Data on treatment seeking for fever were obtained from Demographic and Health Surveys, Malaria Indicator Surveys and Multiple Cluster Indicator Surveys for every MEC and year that data were available. National-level social, economic and health-related variables were gathered from the World Bank as putative covariates of treatment-seeking rates. A generalized additive mixed model (GAMM) was used to estimate treatment-seeking behaviours for countries where survey data were unavailable. Two separate models were developed to predict the proportion of fever cases that would seek treatment at (1) a public health facility or (2) from any kind of treatment provider. Treatment-seeking data were available for 74 MECs and modelled for the remaining 24. GAMMs found that the percentage of pregnant women receiving prenatal care, vaccination rates, education level, government health expenditure, and GDP growth were important predictors for both categories of treatment-seeking outcomes. Treatment-seeking rates, which varied both within and among regions, revealed that public facilities were not always the primary facility type used. Estimates of treatment-seeking rates show how health services are utilized and help correct reported malaria case numbers to obtain more accurate measures of disease burden. The assembled and modelled data demonstrated that while treatment-seeking rates have overall increased over time, access remains low in some malaria endemic regions and utilization of government services is in some areas limited.

Journal ArticleDOI
TL;DR: A robust assessment of the status of malaria at a time when intervention coverage efforts are being scaled up provides a platform from which to guide intervention preparedness and assess change in future periods of transmission.
Abstract: Malaria remains a major public health problem in Madagascar. Widespread scale-up of intervention coverage has led to substantial reductions in case numbers since 2000. However, political instability since 2009 has disrupted these efforts, and a resurgence of malaria has since followed. This paper re-visits the sub-national stratification of malaria transmission across Madagascar to propose a contemporary update, and evaluates the reported routine case data reported at this sub-national scale. Two independent malariometrics were evaluated to re-examine the status of malaria across Madagascar. First, modelled maps of Plasmodium falciparum infection prevalence (PfPR) from the Malaria Atlas Project were used to update the sub-national stratification into ‘ecozones’ based on transmission intensity. Second, routine reports of case data from health facilities were synthesized from 2010 to 2015 to compare the sub-national epidemiology across the updated ecozones over time. Proxy indicators of data completeness are investigated. The epidemiology of malaria is highly diverse across the island’s ecological regions, with eight contiguous ecozones emerging from the transmission intensity PfPR map. East and west coastal areas have highest transmission year-round, contrasting with the central highlands and desert south where trends appear more closely associated with epidemic outbreak events. Ecozones have shown steady increases in reported malaria cases since 2010, with a near doubling of raw reported case numbers from 2014 to 2015. Gauges of data completeness suggest that interpretation of raw reported case numbers will underestimate true caseload as only approximately 60–75 % of health facility data are reported to the central level each month. A sub-national perspective is essential when monitoring the epidemiology of malaria in Madagascar and assessing local control needs. A robust assessment of the status of malaria at a time when intervention coverage efforts are being scaled up provides a platform from which to guide intervention preparedness and assess change in future periods of transmission.

Journal ArticleDOI
TL;DR: The main challenges and opportunities related to risk mapping in low transmission areas are reviewed including recent advancements in risk mapping low transmission malaria, relevant metrics, and statistical approaches andrisk mapping in post-elimination settings.

Journal ArticleDOI
14 May 2016-AIDS
TL;DR: In this paper, the Subnational Estimates Working Group of the HIV Modelling Consortium (SOWG) developed a spatial analysis method that leverages available data to provide local estimates of HIV prevalence.
Abstract: Author The Subnational Estimates Working Group of the HIV Modelling Consortium Abstract Objective : There is evidence of substantial subnational variation in the HIV epidemic. However, robust spatial HIV data are often only available at high levels of geographic aggregation and not at the finer resolution needed for decision making. Therefore, spatial analysis methods that leverage available data to provide local estimates of HIV prevalence may be useful. Such methods exist but have not (...)

Journal ArticleDOI
TL;DR: In this article, the authors assessed integrated paediatric fever management using malaria rapid diagnostic tests (RDT) and Integrated Management of Childhood Illness (IMCI) guidelines, including the relationship between RDT-negative results and antibiotic over-treatment in Malawi health facilities in 2013-2014.
Abstract: There are growing concerns about irrational antibiotic prescription practices in the era of test-based malaria case management. This study assessed integrated paediatric fever management using malaria rapid diagnostic tests (RDT) and Integrated Management of Childhood Illness (IMCI) guidelines, including the relationship between RDT-negative results and antibiotic over-treatment in Malawi health facilities in 2013–2014. A Malawi national facility census included 1981 observed sick children aged 2–59 months with fever complaints. Weighted frequencies were tabulated for other complaints, assessments and prescriptions for RDT-confirmed malaria, IMCI-classified non-severe pneumonia, and clinical diarrhoea. Classification trees using model-based recursive partitioning estimated the association between RDT results and antibiotic over-treatment and learned the influence of 38 other input variables at patient-, provider- and facility-levels. Among 1981 clients, 72 % were tested or referred for malaria diagnosis and 85 % with RDT-confirmed malaria were prescribed first-line anti-malarials. Twenty-eight percent with IMCI-pneumonia were not prescribed antibiotics (under-treatment) and 59 % ‘without antibiotic need’ were prescribed antibiotics (over-treatment). Few clients had respiratory rates counted to identify antibiotic need for IMCI-pneumonia (18 %). RDT-negative children had 16.8 (95 % CI 8.6–32.7) times higher antibiotic over-treatment odds compared to RDT-positive cases conditioned by cough or difficult breathing complaints. Integrated paediatric fever management was sub-optimal for completed assessments and antibiotic targeting despite common compliance to malaria treatment guidelines. RDT-negative results were strongly associated with antibiotic over-treatment conditioned by cough or difficult breathing complaints. A shift from malaria-focused ‘test and treat’ strategies toward ‘IMCI with testing’ is needed to improve quality fever care and rational use of both anti-malarials and antibiotics in line with recent global commitments to combat resistance.

01 Jan 2016
TL;DR: The Global Burden of Disease 2015 Study (GBD 2015) provides an analytical framework to comprehensively assess these trends for under-5 mortality, age-specific and cause-specific mortality among children under 5 years, and stillbirths by geography over time as discussed by the authors.
Abstract: Background Established in 2000, Millennium Development Goal 4 (MDG4) catalysed extraordinary political, financial, and social commitments to reduce under-5 mortality by two-thirds between 1990 and 2015. At the country level, the pace of progress in improving child survival has varied markedly, highlighting a crucial need to further examine potential drivers of accelerated or slowed decreases in child mortality. The Global Burden of Disease 2015 Study (GBD 2015) provides an analytical framework to comprehensively assess these trends for under-5 mortality, age-specific and cause-specific mortality among children under 5 years, and stillbirths by geography over time. Methods Drawing from analytical approaches developed and refined in previous iterations of the GBD study, we generated updated estimates of child mortality by age group (neonatal, post-neonatal, ages 1–4 years, and under 5) for 195 countries and territories and selected subnational geographies, from 1980–2015. We also estimated numbers and rates of stillbirths for these geographies and years. Gaussian process regression with data source adjustments for sampling and non-sampling bias was applied to synthesise input data for under-5 mortality for each geography. Age-specific mortality estimates were generated through a two-stage age–sex splitting process, and stillbirth estimates were produced with a mixed-effects model, which accounted for variable stillbirth definitions and data source-specific biases. For GBD 2015, we did a series of novel analyses to systematically quantify the drivers of trends in child mortality across geographies. First, we assessed observed and expected levels and annualised rates of decrease for under-5 mortality and stillbirths as they related to the Soci-demographic Index (SDI). Second, we examined the ratio of recorded and expected levels of child mortality, on the basis of SDI, across geographies, as well as differences in recorded and expected annualised rates of change for under-5 mortality. Third, we analysed levels and cause compositions of under-5 mortality, across time and geographies, as they related to rising SDI. Finally, we decomposed the changes in under-5 mortality to changes in SDI at the global level, as well as changes in leading causes of under-5 deaths for countries and territories. We documented each step of the GBD 2015 child mortality estimation process, as well as data sources, in accordance with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, 5·8 million (95% uncertainty interval [UI] 5·7–6·0) children younger than 5 years died in 2015, representing a 52·0% (95% UI 50·7–53·3) decrease in the number of under-5 deaths since 1990. Neonatal deaths and stillbirths fell at a slower pace since 1990, decreasing by 42·4% (41·3–43·6) to 2·6 million (2·6–2·7) neonatal deaths and 47·0% (35·1–57·0) to 2·1 million (1·8-2·5) stillbirths in 2015. Between 1990 and 2015, global under-5 mortality decreased at an annualised rate of decrease of 3·0% (2·6–3·3), falling short of the 4·4% annualised rate of decrease required to achieve MDG4. During this time, 58 countries met or exceeded the pace of progress required to meet MDG4. Between 2000, the year MDG4 was formally enacted, and 2015, 28 additional countries that did not achieve the 4·4% rate of decrease from 1990 met the MDG4 pace of decrease. However, absolute levels of under-5 mortality remained high in many countries, with 11 countries still recording rates exceeding 100 per 1000 livebirths in 2015. Marked decreases in under-5 deaths due to a number of communicable diseases, including lower respiratory infections, diarrhoeal diseases, measles, and malaria, accounted for much of the progress in lowering overall under-5 mortality in low-income countries. Compared with gains achieved for infectious diseases and nutritional deficiencies, the persisting toll of neonatal conditions and congenital anomalies on child survival became evident, especially in low-income and low-middle-income countries. We found sizeable heterogeneities in comparing observed and expected rates of under-5 mortality, as well as differences in observed and expected rates of change for under-5 mortality. At the global level, we recorded a divergence in observed and expected levels of under-5 mortality starting in 2000, with the observed trend falling much faster than what was expected based on SDI through 2015. Between 2000 and 2015, the world recorded 10·3 million fewer under-5 deaths than expected on the basis of improving SDI alone. Interpretation Gains in child survival have been large, widespread, and in many places in the world, faster than what was anticipated based on improving levels of development. Yet some countries, particularly in sub-Saharan Africa, still had high rates of under-5 mortality in 2015. Unless these countries are able to accelerate reductions in child deaths at an extraordinary pace, their achievement of proposed SDG targets is unlikely. Improving the evidence base on drivers that might hasten the pace of progress for child survival, ranging from cost-effective intervention packages to innovative financing mechanisms, is vital to charting the pathways for ultimately ending preventable child deaths by 2030. Funding Bill & Melinda Gates Foundation.

Posted Content
TL;DR: An ensemble approach based on stacked generalization that allows for multiple nonlinear algorithmic mean functions to be jointly embedded within the Gaussian process framework is presented and it is shown that the generalized ensemble approach markedly outperforms any individual method.
Abstract: Maps of infectious disease---charting spatial variations in the force of infection, degree of endemicity, and the burden on human health---provide an essential evidence base to support planning towards global health targets. Contemporary disease mapping efforts have embraced statistical modelling approaches to properly acknowledge uncertainties in both the available measurements and their spatial interpolation. The most common such approach is that of Gaussian process regression, a mathematical framework comprised of two components: a mean function harnessing the predictive power of multiple independent variables, and a covariance function yielding spatio-temporal shrinkage against residual variation from the mean. Though many techniques have been developed to improve the flexibility and fitting of the covariance function, models for the mean function have typically been restricted to simple linear terms. For infectious diseases, known to be driven by complex interactions between environmental and socio-economic factors, improved modelling of the mean function can greatly boost predictive power. Here we present an ensemble approach based on stacked generalisation that allows for multiple, non-linear algorithmic mean functions to be jointly embedded within the Gaussian process framework. We apply this method to mapping Plasmodium falciparum prevalence data in Sub-Saharan Africa and show that the generalised ensemble approach markedly out-performs any individual method.

01 Aug 2016
TL;DR: This guidance document will provide users with a deeper understanding of The DHS Program modeled surfaces and their potential use in decision-making and will find new innovative ways to use the modeled surfaces.
Abstract: Improved understanding of geographic variation and inequity in health status wealth and access to resources within countries is central to meeting sustainable development goals. The Demographic and Health Survey (DHS) Program’s modeled surface contributes to the greater need of the development community for small area estimations of health and demographics. The DHS Program is making publicly available a standard set of spatially modeled surfaces for each population-based survey with a select list of indicators relevant for health demographic and development decision-making. The modeled surfaces are created with geo-coded cluster information for current and future population-based DHS surveys and a selection of earlier surveys. The maps are publicly available for download on The DHS Program Spatial Data Repository (http://spatialdata.dhsprogram.com/). This guidance document will provide users with a deeper understanding of The DHS Program modeled surfaces and their potential use in decision-making. The DHS Program has adopted the Model-Based Geostatistics (MBG) approach to creating the modeled surfaces. This is a method for creating statistically rigorous interpolated surfaces that generate new data values for unsampled areas from sampled data points. Such an expansive number of modeled surfaces for a diverse group of health and demographic indicators has never been offered in the past and as such the potential uses are still nascent. Many users will find new innovative ways to use the modeled surfaces that are not discussed or fully analyzed in this document.

Journal ArticleDOI
TL;DR: This methodology, which has broader application to geostatistical mapping in general, could improve the quality and efficiency of drug resistance mapping and thereby guide practical operations to eliminate malaria in affected areas.
Abstract: Artemisinin-resistant Plasmodium falciparum malaria parasites are now present across much of mainland Southeast Asia, where ongoing surveys are measuring and mapping their spatial distribution. These efforts require substantial resources. Here we propose a generic ‘smart surveillance’ methodology to identify optimal candidate sites for future sampling and thus map the distribution of artemisinin resistance most efficiently. The approach uses the ‘uncertainty’ map generated iteratively by a geostatistical model to determine optimal locations for subsequent sampling. The methodology is illustrated using recent data on the prevalence of the K13-propeller polymorphism (a genetic marker of artemisinin resistance) in the Greater Mekong Subregion. This methodology, which has broader application to geostatistical mapping in general, could improve the quality and efficiency of drug resistance mapping and thereby guide practical operations to eliminate malaria in affected areas.