scispace - formally typeset
Search or ask a question

Showing papers by "Yves Pommier published in 2014"


Journal ArticleDOI
TL;DR: BMN 673 is the most potent clinical PARP inhibitor tested to date with the highest efficiency at trapping PARP–DNA complexes and is also approximately 100-fold more cytotoxic than olaparib and rucaparIB in combination with the DNA alkylating agents methyl methane sulfonate and temozolomide.
Abstract: Anti-poly(ADP-ribose)polymerase (PARP) drugs were initially developed as catalytic inhibitors to block the repair of DNA single-strand breaks. We recently reported that several PARP inhibitors have an additional cytotoxic mechanism by trapping PARP-DNA complexes, and that both olaparib and niraparib act as PARP poisons at pharmacological concentrations. Therefore, we have proposed that PARP inhibitors should be evaluated based both on catalytic PARP inhibition and PARP-DNA trapping. Here, we evaluated the novel PARP inhibitor, BMN 673, and compared its effects on PARP1 and PARP2 with two other clinical PARP inhibitors, olaparib and rucaparib, using biochemical and cellular assays in genetically-modified chicken DT40 and human cancer cell lines. Although BMN 673, olaparib and rucaparib are comparable at inhibiting PARP catalytic activity, BMN 673 is ~100-fold more potent at trapping PARP-DNA complexes and more cytotoxic as single agent than olaparib, while olaparib and rucaparib show similar potencies in trapping PARP-DNA complexes. The high level of resistance of PARP1/2 knockout cells to BMN 673 demonstrates the selectivity of BMN 673 for PARP1/2. Moreover, we show that BMN 673 acts by stereospecific binding to PARP1 as its enantiomer, LT674, is several orders of magnitude less efficient. BMN 673 is also ~100-fold more cytotoxic than olaparib and rucaparib in combination with the DNA alkylating agents methyl methane sufonate (MMS) and temozolomide. Our study demonstrates that BMN 673 is the most potent clinical PARP inhibitor tested to date with the highest efficiency at trapping PARP-DNA complexes.

576 citations


Journal ArticleDOI
TL;DR: The rationale for developing TDP inhibitors for combinations with topoisomerase inhibitors, as well as the relevance of TDP1 and TDP2 as determinants of response to anticancer agents, are discussed.

242 citations


Journal ArticleDOI
TL;DR: It is concluded that catalytic PARP inhibitors are highly effective in combination with camptothecins, whereas PARP inhibitor capable of PARP trapping are more effective with temozolomide.
Abstract: We recently showed that poly(ADP-ribose) polymerase (PARP) inhibitors exert their cytotoxicity primarily by trapping PARP-DNA complexes in addition to their NAD+-competitive catalytic inhibitory mechanism. PARP trapping is drug-specific, with olaparib exhibiting a greater ability than veliparib, whereas both compounds are potent catalytic PARP inhibitors. Here, we evaluated the combination of olaparib or veliparib with therapeutically relevant DNA-targeted drugs, including the topoisomerase I inhibitor camptothecin, the alkylating agent temozolomide, the cross-linking agent cisplatin, and the topoisomerase II inhibitor etoposide at the cellular and molecular levels. We determined PARP-DNA trapping and catalytic PARP inhibition in genetically modified chicken lymphoma DT40, human prostate DU145, and glioblastoma SF295 cancer cells. For camptothecin, both PARP inhibitors showed highly synergistic effects due to catalytic PARP inhibition, indicating the value of combining either veliparib or olaparib with topoisomerase I inhibitors. On the other hand, for temozolomide, PARP trapping was critical in addition to catalytic inhibition, consistent with the fact that olaparib was more effective than veliparib in combination with temozolomide. For cisplatin and etoposide, olaparib only showed no or a weak combination effect, which is consistent with the lack of involvement of PARP in the repair of cisplatin- and etoposide-induced lesions. Hence, we conclude that catalytic PARP inhibitors are highly effective in combination with camptothecins, whereas PARP inhibitors capable of PARP trapping are more effective with temozolomide. Our study provides insights in combination treatment rationales for different PARP inhibitors.

231 citations


Journal ArticleDOI
TL;DR: PARP1 is identified as a key component driving the repair of trapped Top1cc by TDP1, and is shown to play a critical role in this process.
Abstract: Poly(ADP-ribose) polymerases (PARP) attach poly(ADP-ribose) (PAR) chains to various proteins including themselves and chromatin. Topoisomerase I (Top1) regulates DNA supercoiling and is the target of camptothecin and indenoisoquinoline anticancer drugs, as it forms Top1 cleavage complexes (Top1cc) that are trapped by the drugs. Endogenous and carcinogenic DNA lesions can also trap Top1cc. Tyrosyl-DNA phosphodiesterase 1 (TDP1), a key repair enzyme for trapped Top1cc, hydrolyzes the phosphodiester bond between the DNA 3′-end and the Top1 tyrosyl moiety. Alternative repair pathways for Top1cc involve endonuclease cleavage. However, it is unknown what determines the choice between TDP1 and the endonuclease repair pathways. Here we show that PARP1 plays a critical role in this process. By generating TDP1 and PARP1 double-knockout lymphoma chicken DT40 cells, we demonstrate that TDP1 and PARP1 are epistatic for the repair of Top1cc. The N-terminal domain of TDP1 directly binds the C-terminal domain of PARP1, and TDP1 is PARylated by PARP1. PARylation stabilizes TDP1 together with SUMOylation of TDP1. TDP1 PARylation enhances its recruitment to DNA damage sites without interfering with TDP1 catalytic activity. TDP1–PARP1 complexes, in turn recruit X-ray repair cross-complementing protein 1 (XRCC1). This work identifies PARP1 as a key component driving the repair of trapped Top1cc by TDP1.

167 citations


Journal ArticleDOI
TL;DR: The mechanistic rationale and proof of principle it provides to evaluate the combination of Top1 inhibitors with ATR inhibitors in clinical trials and the clinical derivative of VE-821 enhanced the in vivo tumor response to irinotecan without additional toxicity.
Abstract: Camptothecin and its derivatives, topotecan and irinotecan, are specific topoisomerase I (Top1) inhibitors and potent anticancer drugs killing cancer cells by producing replication-associated DNA double-strand breaks, and the indenoisoquinoline LMP-400 (indotecan) is a novel Top1 inhibitor in clinical trial. To develop novel drug combinations, we conducted a synthetic lethal siRNA screen using a library that targets nearly 7,000 human genes. Depletion of ATR, the main transducer of replication stress, came as a top candidate gene for camptothecin synthetic lethality. Validation studies using ATR siRNA and the ATR inhibitor VE-821 confirmed marked antiproliferative synergy with camptothecin and even greater synergy with LMP-400. Single-cell analyses and DNA fiber combing assays showed that VE-821 abrogates the S-phase replication elongation checkpoint and the replication origin-firing checkpoint induced by camptothecin and LMP-400. As expected, the combination of Top1 inhibitors with VE-821 inhibited the phosphorylation of ATR and Chk1; however, it strongly induced γH2AX. In cells treated with the combination, the γH2AX pattern changed over time from the well-defined Top1-induced damage foci to an intense peripheral and diffuse nuclear staining, which could be used as response biomarker. Finally, the clinical derivative of VE-821, VX-970, enhanced the in vivo tumor response to irinotecan without additional toxicity. A key implication of our work is the mechanistic rationale and proof of principle it provides to evaluate the combination of Top1 inhibitors with ATR inhibitors in clinical trials.

140 citations


Journal ArticleDOI
TL;DR: Most distinct repair pathways between Top1 and Top2 inhibitors include NHEJ, TDP1, T DP2, PARP1, and Fanconi Anemia genes, whereas homologous recombination seems relevant especially for Top 1 and, to a lesser extent, for Top2 inhibitor.
Abstract: Clinical topoisomerase I (Top1) and II (Top2) inhibitors trap topoisomerases on DNA, thereby inducing protein-linked DNA breaks. Cancer cells resist the drugs by removing topoisomerase-DNA complexes, and repairing the drug-induced DNA double-strand breaks (DSB) by homologous recombination and nonhomologous end joining (NHEJ). Because numerous enzymes and cofactors are involved in the removal of the topoisomerase-DNA complexes and DSB repair, it has been challenging to comprehensively analyze the relative contribution of multiple genetic pathways in vertebrate cells. Comprehending the relative contribution of individual repair factors would give insights into the lesions induced by the inhibitors and genetic determinants of response. Ultimately, this information would be useful to target specific pathways to augment the therapeutic activity of topoisomerase inhibitors. To this end, we put together 48 isogenic DT40 mutant cells deficient in DNA repair and generated one cell line deficient in autophagy (ATG5). Sensitivity profiles were established for three clinically relevant Top1 inhibitors (camptothecin and the indenoisoquinolines LMP400 and LMP776) and three Top2 inhibitors (etoposide, doxorubicin, and ICRF-193). Highly significant correlations were found among Top1 inhibitors as well as Top2 inhibitors, whereas the profiles of Top1 inhibitors were different from those of Top2 inhibitors. Most distinct repair pathways between Top1 and Top2 inhibitors include NHEJ, TDP1, TDP2, PARP1, and Fanconi Anemia genes, whereas homologous recombination seems relevant especially for Top1 and, to a lesser extent, for Top2 inhibitors. We also found and discuss differential pathways among Top1 inhibitors and Top2 inhibitors.

113 citations


Journal ArticleDOI
TL;DR: Evidence is provided that Top1mt, which is conserved across vertebrates, is critical for cardiac tolerance to doxorubicin and adaptive response toDoxorubsicin cardiotoxicity, and the potential of Top1MT single-nucleotide polymorphisms testing to investigate patient susceptibility to dozorubICin-induced cardiot toxicity is suggested.
Abstract: Purpose: Doxorubicin is one of the most effective chemotherapeutic agents. However, up to 30% of the patients treated with doxorubicin suffer from congestive heart failure. The mechanism of doxorubicin cardiotoxicity is likely multifactorial and most importantly, the genetic factors predisposing to doxorubicin cardiotoxicity are unknown. On the basis of the fact that mtDNA lesions and mitochondrial dysfunctions have been found in human hearts exposed to doxorubicin and that mitochondrial topoisomerase 1 (Top1mt) specifically controls mtDNA homeostasis, we hypothesized that Top1mt knockout (KO) mice might exhibit hypersensitivity to doxorubicin. Experimental Design: Wild-type (WT) and KO Top1mt mice were treated once a week with 4 mg/kg doxorubicin for 8 weeks. Heart tissues were analyzed one week after the last treatment. Results: Genetic inactivation of Top1mt in mice accentuates mtDNA copy number loss and mtDNA damage in heart tissue following doxorubicin treatment. Top1mt KO mice also fail to maintain respiratory chain protein production and mitochondrial cristae ultrastructure organization. These mitochondrial defects result in decreased O2 consumption, increased reactive oxygen species production, and enhanced heart muscle damage in animals treated with doxorubicin. Accordingly, Top1mt KO mice die within 45 days after the last doxorubicin injection, whereas the WT mice survive. Conclusions: Our results provide evidence that Top1mt, which is conserved across vertebrates, is critical for cardiac tolerance to doxorubicin and adaptive response to doxorubicin cardiotoxicity. They also suggest the potential of Top1mt single-nucleotide polymorphisms testing to investigate patient susceptibility to doxorubicin-induced cardiotoxicity. Clin Cancer Res; 20(18); 4873–81. ©2014 AACR.

106 citations


Journal ArticleDOI
TL;DR: TDP2 efficiently disjoints relatively large Top2 polypeptide-DNA and -RNA complexes and it is demonstrated that irreversible Top2cc induced in suicidal substrates are not processed by TDP2 unless they first undergo proteolytic processing or denaturation.

104 citations


Journal ArticleDOI
TL;DR: The apoptotic ring is a thick intranuclear shell consisting of epigenetic modifications including histone H2AX and DNA damage response (DDR) proteins that excludes the DNA repair factors usually associated with γ-H2AX in the DDR nuclear foci.
Abstract: Apoptosis is a fundamental process for metazoan development. It is also relevant to the pathophysiology of immune diseases and cancers and to the outcome of cancer chemotherapies, as well as being a target for cancer therapies. Apoptosis involves intrinsic pathways typically initiated by DNA damaging agents and engaging mitochondria, and extrinsic pathways typically initiated by “death receptors” and their ligands TRAIL and TNF at the cell surface. Recently, we discovered the apoptotic ring, which microscopically looks like a nuclear annular staining early in apoptosis. This ring is, in three-dimensional space, a thick intranuclear shell consisting of epigenetic modifications including histone H2AX and DNA damage response (DDR) proteins. It excludes the DNA repair factors usually associated with γ-H2AX in the DDR nuclear foci. Here, we summarize our knowledge of the apoptotic ring, and discuss its biological and pathophysiological relevance, as well as its value as a potential pharmacodynamic biomarker for anticancer therapies.

84 citations


Journal ArticleDOI
18 Jun 2014-PLOS ONE
TL;DR: Based on the premise that genes that are expressed together in a variety of cell types are likely to functions together, mutually correlated genes that function together in various processes in epithelial-like tumor cells are derived.
Abstract: Using gene expression data to enhance our knowledge of control networks relevant to cancer biology and therapy is a challenging but urgent task. Based on the premise that genes that are expressed together in a variety of cell types are likely to functions together, we derived mutually correlated genes that function together in various processes in epithelial-like tumor cells. Expression-correlated genes were derived from data for the NCI-60 human tumor cell lines, as well as data from the Broad Institute’s CCLE cell lines. NCI-60 cell lines that selectively expressed a mutually correlated subset of tight junction genes served as a signature for epithelial-like cancer cells. Those signature cell lines served as a seed to derive other correlated genes, many of which had various other epithelial-related functions. Literature survey yielded molecular interaction and function information about those genes, from which molecular interaction maps were assembled. Many of the genes had epithelial functions unrelated to tight junctions, demonstrating that new function categories were elicited. The most highly correlated genes were implicated in the following epithelial functions: interactions at tight junctions (CLDN7, CLDN4, CLDN3, MARVELD3, MARVELD2, TJP3, CGN, CRB3, LLGL2, EPCAM, LNX1); interactions at adherens junctions (CDH1, ADAP1, CAMSAP3); interactions at desmosomes (PPL, PKP3, JUP); transcription regulation of cell-cell junction complexes (GRHL1 and 2); epithelial RNA splicing regulators (ESRP1 and 2); epithelial vesicle traffic (RAB25, EPN3, GRHL2, EHF, ADAP1, MYO5B); epithelial Ca(+2) signaling (ATP2C2, S100A14, BSPRY); terminal differentiation of epithelial cells (OVOL1 and 2, ST14, PRSS8, SPINT1 and 2); maintenance of apico-basal polarity (RAB25, LLGL2, EPN3). The findings provide a foundation for future studies to elucidate the functions of regulatory networks specific to epithelial-like cancer cells and to probe for anti-cancer drug targets.

80 citations


Journal ArticleDOI
TL;DR: It is demonstrated that mitochondrial DNA displays increased negative supercoiling in TOP1mt knockout cells and murine tissues, and the presence of Top2α-DNA complexes in the mtDNA D-loop region, at the sites where both ends of 7S DNA are positioned, suggests a structural role for Top2 in addition to its classical topoisomerase activities.
Abstract: Topoisomerases are critical for replication, DNA packing and repair, as well as for transcription by allowing changes in DNA topology. Cellular DNA is present both in nuclei and mitochondria, and mitochondrial topoisomerase I (Top1mt) is the only DNA topoisomerase specific for mitochondria in vertebrates. Here, we report in detail the generation of TOP1mt knockout mice, and demonstrate that mitochondrial DNA (mtDNA) displays increased negative supercoiling in TOP1mt knockout cells and murine tissues. This finding suggested imbalanced topoisomerase activity in the absence of Top1mt and the activity of other topoisomerases in mitochondria. Accordingly, we found that both Top2α and Top2β are present and active in mouse and human mitochondria. The presence of Top2α-DNA complexes in the mtDNA D-loop region, at the sites where both ends of 7S DNA are positioned, suggests a structural role for Top2 in addition to its classical topoisomerase activities.

Journal ArticleDOI
TL;DR: Molecular modeling studies based on both the HIV-1 IN and RNase H catalytic core domains provided new structural insights for the future development of these compounds as dual HIV- 1 IN andRNase H inhibitors.
Abstract: A series of antiviral basic quinolinonyl diketo acid derivatives were developed as inhibitors of HIV-1 IN. Compounds 12d,f,i inhibited HIV-1 IN with IC50 values below 100 nM for strand transfer and showed a 2 order of magnitude selectivity over 3′-processing. These strand transfer selective inhibitors also inhibited HIV-1 RNase H with low micromolar potencies. Molecular modeling studies based on both the HIV-1 IN and RNase H catalytic core domains provided new structural insights for the future development of these compounds as dual HIV-1 IN and RNase H inhibitors.

Journal ArticleDOI
TL;DR: This study provides evidence that Top1mt is a direct mitochondrial target of Lam-D and suggests that developing Top1MT inhibitors represents a novel strategy for targeting mitochondrial DNA.
Abstract: Lamellarin D (Lam-D) is a hexacyclic pyrole alkaloid isolated from marine invertebrates, whose biologic properties have been attributed to mitochondrial targeting. Mitochondria contain their own DNA (mtDNA), and the only specific mitochondrial topoisomerase in vertebrates is mitochondrial topoisomerase I (Top1mt). Here, we show that Top1mt is a direct mitochondrial target of Lam-D. In vitro Lam-D traps Top1mt and induces Top1mt cleavage complexes (Top1mtcc). Using single-molecule analyses, we also show that Lam-D slows down supercoil relaxation of Top1mt and strongly inhibits Top1mt religation in contrast to the inefficacy of camptothecin on Top1mt. In living cells, we show that Lam-D accumulates rapidly inside mitochondria, induces cellular Top1mtcc, and leads to mtDNA damage. This study provides evidence that Top1mt is a direct mitochondrial target of Lam-D and suggests that developing Top1mt inhibitors represents a novel strategy for targeting mitochondrial DNA.

Journal ArticleDOI
TL;DR: This study demonstrated that ectopic over-expression of the deacetylated form of TopBP1 in SIRT1 mutant cells repressed replication origin firing, while the acetylatedform of Top BP1 lost this function.
Abstract: SIRT1, the mammalian homolog of yeast Sir2, is a founding member of a family of 7 protein and histone deacetylases that are involved in numerous biological functions. Previous studies revealed that SIRT1 deficiency results in genome instability, which eventually leads to cancer formation, yet the underlying mechanism is unclear. To investigate this, we conducted a proteomics study and found that SIRT1 interacted with many proteins involved in replication fork protection and origin firing. We demonstrated that loss of SIRT1 resulted in increased replication origin firing, asymmetric fork progression, defective intra-S-phase checkpoint, and chromosome damage. Mechanistically, SIRT1 deacetylates and affects the activity of TopBP1, which plays an essential role in DNA replication fork protection and replication origin firing. Our study demonstrated that ectopic over-expression of the deacetylated form of TopBP1 in SIRT1 mutant cells repressed replication origin firing, while the acetylated form of TopBP1 lost this function. Thus, SIRT1 acts upstream of TopBP1 and plays an essential role in maintaining genome stability by modulating DNA replication fork initiation and the intra-S-phase cell cycle checkpoint.

Journal ArticleDOI
TL;DR: The design, synthesis, and evaluation of a series of noncytotoxic inhibitors that exhibited single digit nanomolar EC50 values against HIV-1 vectors harboring wild-type IN in cell-based assays retain greater antiviral efficacy compared to that of RAL when tested against a panel of IN mutants.
Abstract: Integrase (IN) inhibitors are the newest class of antiretroviral agents developed for the treatment of HIV-1 infections. Merck's Raltegravir (RAL) (October 2007) and Gilead's Elvitegravir (EVG) (August 2012), which act as IN strand transfer inhibitors (INSTIs), were the first anti-IN drugs to be approved by the FDA. However, the virus develops resistance to both RAL and EVG, and there is extensive cross-resistance to these two drugs. New "2nd-generation" INSTIs are needed that will have greater efficacy against RAL- and EVG-resistant strains of IN. The FDA has recently approved the first second generation INSTI, GSK's Dolutegravir (DTG) (August 2013). Our current article describes the design, synthesis, and evaluation of a series of 1,8-dihydroxy-2-oxo-1,2-dihydroquinoline-3-carboxamides, 1,4-dihydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamides, and 1-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamides. This resulted in the identification of noncytotoxic inhibitors that exhibited single digit nanomolar EC50 values against HIV-1 vectors harboring wild-type IN in cell-based assays. Importantly, some of these new inhibitors retain greater antiviral efficacy compared to that of RAL when tested against a panel of IN mutants that included Y143R, N155H, G140S/Q148H, G118R, and E138K/Q148K.

Journal ArticleDOI
26 Mar 2014-PLOS ONE
TL;DR: An integrated analysis of concurrent DNA copy number and gene expression change is presented, and novel candidate tumor suppressors with matching alterations in transcript level are identified and revealed.
Abstract: Array-based comparative genomic hybridization (aCGH) is a powerful technique for detecting gene copy number variation. It is generally considered to be robust and convenient since it measures DNA rather than RNA. In the current study, we combine copy number estimates from four different platforms (Agilent 44 K, NimbleGen 385 K, Affymetrix 500 K and Illumina Human1Mv1_C) to compute a reliable, high-resolution, easy to understand output for the measure of copy number changes in the 60 cancer cells of the NCI-DTP (the NCI-60). We then relate the results to gene expression. We explain how to access that database using our CellMiner web-tool and provide an example of the ease of comparison with transcript expression, whole exome sequencing, microRNA expression and response to 20,000 drugs and other chemical compounds. We then demonstrate how the data can be analyzed integratively with transcript expression data for the whole genome (26,065 genes). Comparison of copy number and expression levels shows an overall medium high correlation (median r = 0.247), with significantly higher correlations (median r = 0.408) for the known tumor suppressor genes. That observation is consistent with the hypothesis that gene loss is an important mechanism for tumor suppressor inactivation. An integrated analysis of concurrent DNA copy number and gene expression change is presented. Limiting attention to focal DNA gains or losses, we identify and reveal novel candidate tumor suppressors with matching alterations in transcript level.

Journal ArticleDOI
17 Jul 2014-PLOS ONE
TL;DR: Assessment of cell line response to 19,940 compounds, including 110 FDA-approved drugs, reveals ≈80-fold range in resistance versus sensitivity response across cell lines and introduces two new web-based CellMiner applications that enable exploration of variant-to-compound relationships for a broad range of researchers, especially those without bioinformatics support.
Abstract: Exome sequencing provides unprecedented insights into cancer biology and pharmacological response. Here we assess these two parameters for the NCI-60, which is among the richest genomic and pharmacological publicly available cancer cell line databases. Homozygous genetic variants that putatively affect protein function were identified in 1,199 genes (approximately 6% of all genes). Variants that are either enriched or depleted compared to non-cancerous genomes, and thus may be influential in cancer progression and differential drug response were identified for 2,546 genes. Potential gene knockouts are made available. Assessment of cell line response to 19,940 compounds, including 110 FDA-approved drugs, reveals ≈80-fold range in resistance versus sensitivity response across cell lines. 103,422 gene variants were significantly correlated with at least one compound (at p<0.0002). These include genes of known pharmacological importance such as IGF1R, BRAF, RAD52, MTOR, STAT2 and TSC2 as well as a large number of candidate genes such as NOM1, TLL2, and XDH. We introduce two new web-based CellMiner applications that enable exploration of variant-to-compound relationships for a broad range of researchers, especially those without bioinformatics support. The first tool, “Genetic variant versus drug visualization”, provides a visualization of significant correlations between drug activity-gene variant combinations. Examples are given for the known vemurafenib-BRAF, and novel ifosfamide-RAD52 pairings. The second, “Genetic variant summation” allows an assessment of cumulative genetic variations for up to 150 combined genes together; and is designed to identify the variant burden for molecular pathways or functional grouping of genes. An example of its use is provided for the EGFR-ERBB2 pathway gene variant data and the identification of correlated EGFR, ERBB2, MTOR, BRAF, MEK and ERK inhibitors. The new tools are implemented as an updated web-based CellMiner version, for which the present publication serves as a compendium.

Journal ArticleDOI
TL;DR: The recently disclosed 1-hydroxy-2-oxo-1,2-dihydro-1-8-naphthyridine-3-carboxamides IN inhibitors are modified to develop compounds that have improved efficacies against recombinant IN in biochemical assays and have the potential to yield clinical agents that are effective against the known strains of resistant viruses.
Abstract: There are currently three HIV-1 integrase (IN) strand transfer inhibitors (INSTIs) approved by the FDA for the treatment of AIDS. However, the emergence of drug-resistant mutants emphasizes the need to develop additional agents that have improved efficacies against the existent resistant mutants. As reported herein, we modified our recently disclosed 1-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamides IN inhibitors to develop compounds that have improved efficacies against recombinant IN in biochemical assays. These new compounds show single-digit nanomolar antiviral potencies against HIV vectors that carry wild-type (WT) IN in a single round replication assay and have improved potency against vectors harboring the major forms of drug resistant IN mutants. These compounds also have low toxicity for cultured cells, which in several cases, results in selectivity indices (CC50/EC50) of greater than 10000. The compounds have the potential, with additional structural modifications, to yield clinical agents that are effective against the known strains of resistant viruses.

Journal ArticleDOI
TL;DR: Crystal structures of three inhibitors (compounds (−)-13c, 59, and 65) bound to a multidomain PARP-1 structure were obtained, providing insights into further development of these inhibitors.
Abstract: Novel substituted 2,3-dihydrobenzofuran-7-carboxamide (DHBF-7-carboxamide) and 2,3-dihydrobenzofuran-3(2H)-one-7-carboxamide (DHBF-3-one-7-carboxamide) derivatives were synthesized and evaluated as inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1). A structure-based design strategy resulted in lead compound 3 (DHBF-7-carboxamide; IC50 = 9.45 μM). To facilitate synthetically feasible derivatives, an alternative core was designed, DHBF-3-one-7-carboxamide (36, IC50 = 16.2 μM). The electrophilic 2-position of this scaffold was accessible for extended modifications. Substituted benzylidene derivatives at the 2-position were found to be the most potent, with 3′,4′-dihydroxybenzylidene 58 (IC50 = 0.531 μM) showing a 30-fold improvement in potency. Various heterocycles attached at the 4′-hydroxyl/4′-amino of the benzylidene moiety resulted in significant improvement in inhibition of PARP-1 activity (e.g., compounds 66–68, 70, 72, and 73; IC50 values from 0.718 to 0.079 μM). Compound 66 showed selective cytotox...

Journal ArticleDOI
TL;DR: The 7-azaindenoisoquinolines were able to partially overcome resistance in several drug-resistant cell lines, and they were not substrates for the ABCB1 drug efflux transporter.
Abstract: Optimization of the lactam ω-aminoalkyl substituents in a series of 7-azaindenoisoquinolines resulted in new anticancer agents with improved Top1 inhibitory potencies and cancer cell cytotoxicities. The new compounds 14–17 and 19 exhibited mean graph midpoint cytotoxicity (GI50) values of 21–71 nM in the NCI panel of 60 human cancer cell cultures. Ternary 7-azaindenoisoquinoline–DNA–Top1 cleavage complexes that persist for up to 6 h were detected in HCT116 colon cancer cells. Ternary complexes containing 7-azaindenoisoquinolines were significantly more stable than those in which camptothecin was incorporated. DNA content distribution histograms showed S-phase block 3 h after drug removal. Drug-induced DNA damage in HCT116 cells was revealed by induction of the histone γ-H2AX marker. The 7-azaindenoisoquinolines were able to partially overcome resistance in several drug-resistant cell lines, and they were not substrates for the ABCB1 drug efflux transporter. Molecular modeling studies indicate that the 7-a...

Journal ArticleDOI
TL;DR: 2-position-modified indenoisoquinolines modified at the 2-position with three-carbon side chains ending with amino substituents are described as dual Top1–TDP1 inhibitors using a structure-based drug design approach.
Abstract: Tyrosyl-DNA phosphodiesterase I (TDP1) repairs stalled topoisomerase I (Top1)–DNA covalent complexes and has been proposed to be a promising and attractive target for cancer treatment. Inhibitors of TDP1 could conceivably act synergistically with Top1 inhibitors and thereby potentiate the effects of Top1 poisons. This study describes the successful design and synthesis of 2-position-modified indenoisoquinolines as dual Top1–TDP1 inhibitors using a structure-based drug design approach. Enzyme inhibition studies indicate that indenoisoquinolines modified at the 2-position with three-carbon side chains ending with amino substituents show both promising Top1 and TDP1 inhibitory activity. Molecular modeling of selected target compounds bound to Top1 and TDP1 was used to rationalize the enzyme inhibition results and structure–activity relationship analysis.

Journal ArticleDOI
TL;DR: In insights into the possible inactivation of TDP1 in cancers and its relationship to cellular response to Top1-targeted drugs, the NCI-60 is revealed, and two TDP 1 knockout lung cancer cell lines are discovered.

Journal ArticleDOI
TL;DR: A cell-based high-throughput screening assay for the discovery of inhibitors for human TDP1 found the most potent compound (Cpd1) that offers characteristic close to veliparib, a leading clinical PARP inhibitor and may represent a new scaffold for the development of PARP inhibitors.

Journal ArticleDOI
TL;DR: This is the first map of Top1mt sites across the entire mitochondrial genome and a new setup to elicit mtDNA damage, suggesting the existence of specific mitochondrial pathways for the removal of damaged mtDNA.


Journal ArticleDOI
TL;DR: The quantitative high-throughput screening (qHTS) of the NIH Molecular Libraries Small Molecule Repository using recombinant human TDP1 is reported and inclusion of a TDP2 counter-screening assay allowed the identification of two novel series of selective T DP1 inhibitors.
Abstract: Drug screening against novel targets is warranted to generate biochemical probes and new therapeutic drug leads. TDP1 and TDP2 are two DNA repair enzymes that have yet to be successfully targeted. TDP1 repairs topoisomerase I-, alkylation-, and chain terminator-induced DNA damage, whereas TDP2 repairs topoisomerase II-induced DNA damage. Here, we report the quantitative high-throughput screening (qHTS) of the NIH Molecular Libraries Small Molecule Repository using recombinant human TDP1. We also developed a secondary screening method using a multiple loading gel-based assay where recombinant TDP1 is replaced by whole cell extract (WCE) from genetically engineered DT40 cells. While developing this assay, we determined the importance of buffer conditions for testing TDP1, and most notably the possible interference of phosphate-based buffers. The high specificity of endogenous TDP1 in WCE allowed the evaluation of a large number of hits with up to 600 samples analyzed per gel via multiple loadings. The increased stringency of the WCE assay eliminated a large fraction of the initial hits collected from the qHTS. Finally, inclusion of a TDP2 counter-screening assay allowed the identification of two novel series of selective TDP1 inhibitors.

Journal ArticleDOI
TL;DR: It is demonstrated that the Drosophila gene glaikit (gkt) is the ortholog of TDP1, and that it is critical for neuroprotection, normal longevity, and repair of damaged DNA.
Abstract: Tyrosyl-DNA phosphodiesterase (TDP1) is a phylogenetically conserved enzyme critical for the removal of blocking lesions at the 3′ ends of DNA or RNA. This study analyzes the Drosophila TDP1 gene ortholog glaikit (gkt) and its possible role(s) in the repair of endogenous DNA lesions and neuroprotection. To do so, we studied a homozygous PiggyBac insertion (c03958) that disrupts the 5′ UTR of gkt. Protein extracts of c03958 flies were defective in hydrolyzing 3′-DNA–tyrosyl residues, demonstrating that gkt is the Drosophila TDP1. Although the mutant is generally healthy and fertile, females exhibit reduced lifespan and diminished climbing ability. This phenotype was rescued by neuronal expression of TDP1. In addition, when c03958 larvae were exposed to bleomycin, an agent that produces oxidative DNA damage, or topoisomerase I-targeted drugs (camptothecin and a noncamptothecin indenoisoquinoline derivative, LMP-776), survivors displayed rough eye patches, which were rescued by neuronal expression of TDP1. Our study establishes that gkt is the Drosophila TDP1 gene, and that it is critical for neuroprotection, normal longevity, and repair of damaged DNA.

Patent
10 Nov 2014
TL;DR: In this paper, the synthesis and use of certain N-substituted indenoisoquinoline compounds which inhibit the activity of Tdp1 or Topoisomerase I (Top1) or demonstrate anticancer activity was described.
Abstract: The invention described herein pertains to the synthesis and use of certain N-substituted indenoisoquinoline compounds which inhibit the activity Tyrosyl-DNA Phosphodiesterase I (Tdp1) or Topoisomerase I (Top1) or both, or otherwise demonstrate anticancer activity. Also disclosed are novel N-substituted indenoisoquinoline compounds and pharmaceutical compositions comprising the novel N-substituted indenoisoquinoline compounds.

Proceedings ArticleDOI
TL;DR: The data suggest that the expression of SLFN11 may be a novel genomic biomarker for PARP inhibitor sensitivity, and differential kinetics of DNA repair and PARP-DNA complex formation were observed betweenSLFN11 proficient versus deficient cells.
Abstract: Poly(ADP-ribose)polymerases (PARP) are DNA damage sensors and major repair factors for DNA single-strand breaks. Since the discovery of the synthetic lethality of PARP inhibitors in homologous recombination-deficient cells, the mechanism by which PARP inhibitors exert their cytotoxicity has been dominantly interpreted as an accumulation of unrepaired single-strand breaks resulting from catalytic PARP inhibition. We recently reported that several PARP inhibitors have an additional cytotoxic mechanism by trapping PARP-DNA complexes (1). BMN 673 is the most potent PARP inhibitor to date in terms of cytotoxicity and PARP trapping potency (2). Nevertheless, the NCI60 data show that half of the 60 cell lines are tolerant to BMN 673. To elucidate the mechanisms of tolerance, we searched for genes with expression levels correlated to BMN 673 sensitivity, and found that Schlafen 11 (SLFN11) is one of the most positively correlated genes. Most cells without SLFN11 expression were tolerant to BMN 673. To examine the involvement of SLFN11 in BMN 673 sensitivity, we disrupted the SLFN11 gene in DU145 prostate cancer cells and EW8 Ewing9s sarcoma cells where SLFN11 expression levels and BMN 673 sensitivities are high. Knocking out SLFN11 in DU145 and EW8 did not affect their cell growth or cell cycle progression under normal conditions, but diminished their hypersensitivity to BMN 673 and another PARP inhibitor, olaparib. Cell cycle analyses revealed that SLFN11-proficient cells arrested at S phase while SLFN11 deficient cells were able to progress to G2 phase in the presence of BMN 673. Interestingly, arresting points at S phase in SLFN11 proficient cells were earlier when more PARP-DNA complexes were induced, suggesting that SLFN11 inhibits DNA replication under DNA damage. Differential kinetics of DNA repair and PARP-DNA complex formation were observed between SLFN11 proficient versus deficient cells. Our data suggest that the expression of SLFN11 may be a novel genomic biomarker for PARP inhibitor sensitivity. 1. Murai J, Huang S-yN, Das BB, Renaud A, Zhang Y, Doroshow JH, et al. Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors. Cancer Research. 2012;72:5588-99. 2. Murai J, Huang SN, Renaud A, Zhang Y, Ji J, Takeda S, et al. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol Cancer Ther. 2014; Submitted. Citation Format: Junko Murai, Rozenn Josse, James H. Doroshow, Yves Pommier. Schlafen 11 (SLFN11) is a critical determinant of cellular sensitivity to PARP inhibitors. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 1718. doi:10.1158/1538-7445.AM2014-1718

Journal ArticleDOI
TL;DR: Investigation of anti-HIV activity and HIV integrase inhibitory activity of various extracts of polyherbal formulation BH to investigation of novel inhibitors of HIV Integrase.
Abstract: Background HIV integrase (IN) plays important roles at several steps, including viral DNA nuclear import, targeting viral DNA to host chromatin and integration. Identification of novel inhibitors of HIV Integrase has emerged as promising antiviral agents for the treatment of HIV/AIDS. Present work is to investigation of anti-HIV activity and HIV integrase inhibitory activity of various extracts of polyherbal formulation BH.