scispace - formally typeset
Search or ask a question

Showing papers in "Cancer Research in 2014"


Journal ArticleDOI
TL;DR: Pancreas and liver cancers are projected to surpass breast, prostate, and colorectal cancers to become the second and third leading causes of cancer-related death by 2030, respectively.
Abstract: Cancer incidence and deaths in the United States were projected for the most common cancer types for the years 2020 and 2030 based on changing demographics and the average annual percentage changes in incidence and death rates. Breast, prostate, and lung cancers will remain the top cancer diagnoses throughout this time, but thyroid cancer will replace colorectal cancer as the fourth leading cancer diagnosis by 2030, and melanoma and uterine cancer will become the fifth and sixth most common cancers, respectively. Lung cancer is projected to remain the top cancer killer throughout this time period. However, pancreas and liver cancers are projected to surpass breast, prostate, and colorectal cancers to become the second and third leading causes of cancer-related death by 2030, respectively. Advances in screening, prevention, and treatment can change cancer incidence and/or death rates, but it will require a concerted effort by the research and healthcare communities now to effect a substantial change for the future.

4,973 citations



Journal ArticleDOI
TL;DR: It is demonstrated in a mouse model of pancreatic ductal adenocarcinoma (PDAC) that inhibiting signaling by the myeloid growth factor receptor CSF1R can functionally reprogram macrophage responses that enhance antigen presentation and productive antitumor T-cell responses.
Abstract: Cancer immunotherapy generally offers limited clinical benefit without coordinated strategies to mitigate the immunosuppressive nature of the tumor microenvironment. Critical drivers of immune escape in the tumor microenvironment include tumor-associated macrophages and myeloid-derived suppressor cells, which not only mediate immune suppression, but also promote metastatic dissemination and impart resistance to cytotoxic therapies. Thus, strategies to ablate the effects of these myeloid cell populations may offer great therapeutic potential. In this report, we demonstrate in a mouse model of pancreatic ductal adenocarcinoma (PDAC) that inhibiting signaling by the myeloid growth factor receptor CSF1R can functionally reprogram macrophage responses that enhance antigen presentation and productive antitumor T-cell responses. Investigations of this response revealed that CSF1R blockade also upregulated T-cell checkpoint molecules, including PDL1 and CTLA4, thereby restraining beneficial therapeutic effects. We found that PD1 and CTLA4 antagonists showed limited efficacy as single agents to restrain PDAC growth, but that combining these agents with CSF1R blockade potently elicited tumor regressions, even in larger established tumors. Taken together, our findings provide a rationale to reprogram immunosuppressive myeloid cell populations in the tumor microenvironment under conditions that can significantly empower the therapeutic effects of checkpoint-based immunotherapeutics.

983 citations


Journal ArticleDOI
TL;DR: Mechanistic investigations showed that IFNγ produced by CD8(+) T cells was responsible for mediating PD-L1 upregulation on tumor cells after delivery of fractionated radiotherapy, revealing the mechanistic basis for an adaptive response by tumor cells that mediates resistance to fractionation radiotherapy and its treatment failure.
Abstract: Radiotherapy is a major part in the treatment of most common cancers, but many patients experience local recurrence with metastatic disease. In evaluating response biomarkers, we found that low doses of fractionated radiotherapy led to PD-L1 upregulation on tumor cells in a variety of syngeneic mouse models of cancer. Notably, fractionated radiotherapy delivered in combination with αPD-1 or αPD-L1 mAbs generated efficacious CD8(+) T-cell responses that improved local tumor control, long-term survival, and protection against tumor rechallenge. These favorable outcomes were associated with induction of a tumor antigen-specific memory immune response. Mechanistic investigations showed that IFNγ produced by CD8(+) T cells was responsible for mediating PD-L1 upregulation on tumor cells after delivery of fractionated radiotherapy. Scheduling of anti-PD-L1 mAb was important for therapeutic outcome, with concomitant but not sequential administration with fractionated radiotherapy required to improve survival. Taken together, our results reveal the mechanistic basis for an adaptive response by tumor cells that mediates resistance to fractionated radiotherapy and its treatment failure. With attention to scheduling, combination immunoradiotherapy with radiotherapy and PD-1/PD-L1 signaling blockade may offer an immediate strategy for clinical evaluation to improve treatment outcomes.

943 citations


Journal ArticleDOI
TL;DR: A role for hypoxia/HIF-1 in driving immune escape from CTL is pointed to, and a novel cancer immunotherapy to block PD-L1 expression in hypoxic-tumor cells by administering NO mimetics is suggested.
Abstract: Immune escape is a fundamental trait of cancer in which mechanistic knowledge is incomplete. Here, we describe a novel mechanism by which hypoxia contributes to tumoral immune escape from cytotoxic T lymphocytes (CTL). Exposure of human or murine cancer cells to hypoxia for 24 hours led to upregulation of the immune inhibitory molecule programmed cell death ligand-1 (PD-L1; also known as B7-H1), in a manner dependent on the transcription factor hypoxia-inducible factor-1α (HIF-1α). In vivo studies also demonstrated cellular colocalization of HIF-1α and PD-L1 in tumors. Hypoxia-induced expression of PD-L1 in cancer cells increased their resistance to CTL-mediated lysis. Using glyceryl trinitrate (GTN), an agonist of nitric oxide (NO) signaling known to block HIF-1α accumulation in hypoxic cells, we prevented hypoxia-induced PD-L1 expression and diminished resistance to CTL-mediated lysis. Moreover, transdermal administration of GTN attenuated tumor growth in mice. We found that higher expression of PD-L1 induced in tumor cells by exposure to hypoxia led to increased apoptosis of cocultured CTLs and Jurkat leukemia T cells. This increase in apoptosis was prevented by blocking the interaction of PD-L1 with PD-1, the PD-L1 receptor on T cells, or by addition of GTN. Our findings point to a role for hypoxia/HIF-1 in driving immune escape from CTL, and they suggest a novel cancer immunotherapy to block PD-L1 expression in hypoxic-tumor cells by administering NO mimetics.

555 citations


Journal ArticleDOI
TL;DR: These results show how tumors infiltrated by TLS-associated mature DC generate a specific immune contexture characterized by a strong Th1 and cytotoxic orientation that confers the lowest risk of death.
Abstract: Tumor-infiltrating T cells, particularly CD45RO(+)CD8(+) memory T cells, confer a positive prognostic value in human cancers. However, the mechanisms that promote a protective T-cell response in the tumor microenvironment remain unclear. In chronic inflammatory settings such as the tumor microenvironment, lymphoid neogenesis can occur to create local lymph node-like structures known as tertiary lymphoid structures (TLS). These structures can exacerbate a local immune response, such that TLS formation in tumors may help promote an efficacious immune contexture. However, the role of TLS in tumors has yet to be investigated carefully. In lung tumors, mature dendritic cells (DC) present in tumor-associated TLS can provide a specific marker of these structures. In this study, we evaluated the influence of TLS on the characteristics of the immune infiltrate in cohorts of prospective and retrospective human primary lung tumors (n = 458). We found that a high density of mature DC correlated closely to a strong infiltration of T cells that are predominantly of the effector-memory phenotype. Moreover, mature DC density correlated with expression of genes related to T-cell activation, T-helper 1 (Th1) phenotype, and cytotoxic orientation. Lastly, a high density of TLS-associated DC correlated with long-term survival, which also allowed a distinction of patients with high CD8(+) T-cell infiltration but a high risk of death. Taken together, our results show how tumors infiltrated by TLS-associated mature DC generate a specific immune contexture characterized by a strong Th1 and cytotoxic orientation that confers the lowest risk of death. Furthermore, our findings highlight the pivotal function of TLS in shaping the immune character of the tumor microenvironment, in promoting a protective immune response mediated by T cells against cancer.

416 citations


Journal ArticleDOI
TL;DR: In this review, the basics of PAI and its recent advances in biomedical research are described, followed by a discussion of strategies for clinical translation of the technique.
Abstract: Photoacoustic imaging (PAI) has the potential for real-time molecular imaging at high resolution and deep inside the tissue, using nonionizing radiation and not necessarily depending on exogenous imaging agents, making this technique very promising for a range of clinical applications. The fact that PAI systems can be made portable and compatible with existing imaging technologies favors clinical translation even more. The breadth of clinical applications in which photoacoustics could play a valuable role include: noninvasive imaging of the breast, sentinel lymph nodes, skin, thyroid, eye, prostate (transrectal), and ovaries (transvaginal); minimally invasive endoscopic imaging of gastrointestinal tract, bladder, and circulating tumor cells (in vivo flow cytometry); and intraoperative imaging for assessment of tumor margins and (lymph node) metastases. In this review, we describe the basics of PAI and its recent advances in biomedical research, followed by a discussion of strategies for clinical translation of the technique.

393 citations


Journal ArticleDOI
TL;DR: This study demonstrates the multiple mechanisms whereby VISTA relieves negative regulation by hematopoietic cells and enhances protective antitumor immunity and establishes a foundation for designing VISTA- targeted approaches either as a monotherapy or in combination with additional immune-targeted strategies for cancer immunotherapy.
Abstract: V-domain Ig suppressor of T-cell activation (VISTA) is a novel negative checkpoint ligand that is homologous to PD-L1 and suppresses T-cell activation. This study demonstrates the multiple mechanisms whereby VISTA relieves negative regulation by hematopoietic cells and enhances protective antitumor immunity. VISTA is highly expressed on myeloid cells and Foxp3(+)CD4(+) regulatory cells, but not on tumor cells within the tumor microenvironment (TME). VISTA monoclonal antibody (mAb) treatment increased the number of tumor-specific T cells in the periphery and enhanced the infiltration, proliferation, and effector function of tumor-reactive T cells within the TME. VISTA blockade altered the suppressive feature of the TME by decreasing the presence of monocytic myeloid-derived suppressor cells and increasing the presence of activated dendritic cells within the tumor microenvironment. In addition, VISTA blockade impaired the suppressive function and reduced the emergence of tumor-specific Foxp3(+)CD4(+) regulatory T cells. Consequently, VISTA mAb administration as a monotherapy significantly suppressed the growth of both transplantable and inducible melanoma. Initial studies explored a combinatorial regimen using VISTA blockade and a peptide-based cancer vaccine with TLR agonists as adjuvants. VISTA blockade synergized with the vaccine to effectively impair the growth of established tumors. Our study therefore establishes a foundation for designing VISTA-targeted approaches either as a monotherapy or in combination with additional immune-targeted strategies for cancer immunotherapy.

360 citations


Journal ArticleDOI
TL;DR: The results establish VISTA as a negative checkpoint regulator that suppresses T-cell activation, induces Foxp3 expression, and is highly expressed within the tumor microenvironment and may offer an immunotherapeutic strategy for human cancer.
Abstract: V-domain Ig suppressor of T cell activation (VISTA) is a potent negative regulator of T-cell function that is expressed on hematopoietic cells. VISTA levels are heightened within the tumor microenvironment, in which its blockade can enhance antitumor immune responses in mice. In humans, blockade of the related programmed cell death 1 (PD-1) pathway has shown great potential in clinical immunotherapy trials. Here, we report the structure of human VISTA and examine its function in lymphocyte negative regulation in cancer. VISTA is expressed predominantly within the hematopoietic compartment with highest expression within the myeloid lineage. VISTA-Ig suppressed proliferation of T cells but not B cells and blunted the production of T-cell cytokines and activation markers. Our results establish VISTA as a negative checkpoint regulator that suppresses T-cell activation, induces Foxp3 expression, and is highly expressed within the tumor microenvironment. By analogy to PD-1 and PD-L1 blockade, VISTA blockade may offer an immunotherapeutic strategy for human cancer.

355 citations


Journal ArticleDOI
TL;DR: This commentary/review advances the premise that autophagy is actually populated by at least two additional players, and is now term the cytostatic form of autophagic in that its activation results in prolonged growth inhibition as well as reduced clonogenic survival but in the absence of actual loss of cell viability through apoptosis or necrosis.
Abstract: It is generally thought that autophagy has two primary and opposing functions in tumor cells in response to stress induced by chemotherapy or radiation. One is the cytoprotective function that can in theory be inhibited for therapeutic advantage by sensitizing the cells to these treatment modalities. The other is the cytotoxic function that is generally not observed with conventional treatment modalities, but that may function to promote tumor cell killing either alone or in association with apoptosis. In this commentary/review, we advance the premise that autophagy is actually populated by at least two additional players. One we have termed the nonprotective form of autophagy, where the cell is apparently carrying out autophagy-mediated degradative functions, but where autophagy inhibition does not lead to perceptible alterations in drug or radiation sensitivity. The other is what we now term the cytostatic form of autophagy in that its activation results in prolonged growth inhibition as well as reduced clonogenic survival (loss of reproductive capacity) but in the absence of actual loss of cell viability through apoptosis or necrosis; however, as is the case with cytototoxic autophagy, inhibition of cytostatic autophagy protects the tumor cell from the agent (drugs or radiation) that promotes the autophagic response. In view of current clinical efforts to exploit autophagy inhibition as a therapeutic strategy for sensitization of malignancies to chemotherapy and radiation, it is critical to recognize that if chemotherapy and/or radiation actually promote autophagy in patient tumors, the autophagy is not of necessity cytoprotective in function.

355 citations


Journal ArticleDOI
TL;DR: The results show that hypoxia is not a major driver of TAM subset differentiation, but rather specifically fine-tunes the phenotype of M2-like MHC-II(lo) TAM.
Abstract: Tumor-associated macrophages (TAM) are exposed to multiple microenvironmental cues in tumors, which collaborate to endow these cells with protumoral activities. Hypoxia, caused by an imbalance in oxygen supply and demand because of a poorly organized vasculature, is often a prominent feature in solid tumors. However, to what extent tumor hypoxia regulates the TAM phenotype in vivo is unknown. Here, we show that the myeloid infiltrate in mouse lung carcinoma tumors encompasses two morphologically distinct CD11b(hi)F4/80(hi)Ly6C(lo) TAM subsets, designated as MHC-II(lo) and MHC-II(hi) TAM, both of which were derived from tumor-infiltrating Ly6C(hi) monocytes. MHC-II(lo) TAM express higher levels of prototypical M2 markers and reside in more hypoxic regions. Consequently, MHC-II(lo) TAM contain higher mRNA levels for hypoxia-regulated genes than their MHC-II(hi) counterparts. To assess the in vivo role of hypoxia on these TAM features, cancer cells were inoculated in prolyl hydroxylase domain 2 (PHD2)-haplodeficient mice, resulting in better-oxygenated tumors. Interestingly, reduced tumor hypoxia did not alter the relative abundance of TAM subsets nor their M2 marker expression, but specifically lowered hypoxia-sensitive gene expression and angiogenic activity in the MHC-II(lo) TAM subset. The same observation in PHD2(+/+) → PHD2(+/-) bone marrow chimeras also suggests organization of a better-oxygenized microenvironment. Together, our results show that hypoxia is not a major driver of TAM subset differentiation, but rather specifically fine-tunes the phenotype of M2-like MHC-II(lo) TAM.

Journal ArticleDOI
TL;DR: It is shown that Fusobacterium enrichment is associated with specific molecular subsets of colorectal cancers, offering support for a pathogenic role in coloreCTal cancer for this gut microbiome component.
Abstract: Fusobacterium species are part of the gut microbiome in humans. Recent studies have identified overrepresentation of Fusobacterium in colorectal cancer tissues, but it is not yet clear whether this is pathogenic or simply an epiphenomenon. In this study, we evaluated the relationship between Fusobacterium status and molecular features in colorectal cancers through quantitative real-time PCR in 149 colorectal cancer tissues, 89 adjacent normal appearing mucosae and 72 colonic mucosae from cancer-free individuals. Results were correlated with CpG island methylator phenotype (CIMP) status, microsatellite instability (MSI), and mutations in BRAF , KRAS , TP53 , CHD7 , and CHD8 . Whole-exome capture sequencing data were also available in 11 cases. Fusobacterium was detectable in 111 of 149 (74%) colorectal cancer tissues and heavily enriched in 9% (14/149) of the cases. As expected, Fusobacterium was also detected in normal appearing mucosae from both cancer and cancer-free individuals, but the amount of bacteria was much lower compared with colorectal cancer tissues (a mean of 250-fold lower for Pan-fusobacterium ). We found the Fusobacterium -high colorectal cancer group (FB-high) to be associated with CIMP positivity ( P = 0.001), TP53 wild-type ( P = 0.015), hMLH1 methylation positivity ( P = 0.0028), MSI ( P = 0.018), and CHD7 / 8 mutation positivity ( P = 0.002). Among the 11 cases where whole-exome sequencing data were available, two that were FB-high cases also had the highest number of somatic mutations (a mean of 736 per case in FB-high vs. 225 per case in all others). Taken together, our findings show that Fusobacterium enrichment is associated with specific molecular subsets of colorectal cancers, offering support for a pathogenic role in colorectal cancer for this gut microbiome component. Cancer Res; 74(5); 1311–8. ©2014 AACR .


Journal ArticleDOI
TL;DR: Recent findings that emphasize the detrimental effects of hypersialylation on multiple aspects of tumor growth and behavior are reviewed and novel therapeutic strategies to target aberrant sialic acids are discussed.
Abstract: Over four decades ago, specific tumor characteristics were ascribed to the increased expression of sialic acid sugars on the surface of cancer cells, and this led to the definition of sialic acids as potential therapeutic targets. Recent advances in glycobiology and cancer research have defined the key processes underlying aberrant expression of sialic acids in cancer, and its consequences, more precisely. These consequences include effects on tumor growth, escape from apoptosis, metastasis formation, and resistance to therapy. Collectively, these novel insights provide further rationale for the design and development of therapeutic approaches that interfere with excessively high expression of sialic acids in cancer cells. Strategies to target aberrant sialylation in cancer, however, have evolved comparatively slowly. Here, we review recent findings that emphasize the detrimental effects of hypersialylation on multiple aspects of tumor growth and behavior. We also discuss novel therapeutic strategies.

Journal ArticleDOI
TL;DR: The evidence that has led to the move away from the use of in vitro cell lines and toward various forms of xenograft models for drug screening and development is explored.
Abstract: Despite the millions of dollars spent on target validation and drug optimization in preclinical models, most therapies still fail in phase III clinical trials. Our current model systems, or the way we interpret data from them, clearly do not have sufficient clinical predictive power. Current opinion suggests that this is because the cell lines and xenografts that are commonly used are inadequate models that do not effectively mimic and predict human responses. This has become such a widespread belief that it approaches dogma in the field of drug discovery and optimization and has spurred a surge in studies devoted to the development of more sophisticated animal models such as orthotopic patient-derived xenografts in an attempt to obtain more accurate estimates of whether particular cancers will respond to given treatments. Here, we explore the evidence that has led to the move away from the use of in vitro cell lines and toward various forms of xenograft models for drug screening and development. We review some of the pros and cons of each model and give an overview of ways in which the use of cell lines could be modified to improve the predictive capacity of this well-defined model.

Journal ArticleDOI
TL;DR: It is established that human colorectal cancer lines are representative of the main subtypes of primary tumors at the genomic level, further validating their utility as tools to investigate coloreCTal cancer biology and drug responses.
Abstract: Human colorectal cancer cell lines are used widely to investigate tumor biology, experimental therapy, and biomarkers. However, to what extent these established cell lines represent and maintain the genetic diversity of primary cancers is uncertain. In this study, we profiled 70 colorectal cancer cell lines for mutations and DNA copy number by whole-exome sequencing and SNP microarray analyses, respectively. Gene expression was defined using RNA-Seq. Cell line data were compared with those published for primary colorectal cancers in The Cancer Genome Atlas. Notably, we found that exome mutation and DNA copy-number spectra in colorectal cancer cell lines closely resembled those seen in primary colorectal tumors. Similarities included the presence of two hypermutation phenotypes, as defined by signatures for defective DNA mismatch repair and DNA polymerase e proofreading deficiency, along with concordant mutation profiles in the broadly altered WNT, MAPK, PI3K, TGFβ, and p53 pathways. Furthermore, we documented mutations enriched in genes involved in chromatin remodeling (ARID1A, CHD6, and SRCAP) and histone methylation or acetylation (ASH1L, EP300, EP400, MLL2, MLL3, PRDM2, and TRRAP). Chromosomal instability was prevalent in nonhypermutated cases, with similar patterns of chromosomal gains and losses. Although paired cell lines derived from the same tumor exhibited considerable mutation and DNA copy-number differences, in silico simulations suggest that these differences mainly reflected a preexisting heterogeneity in the tumor cells. In conclusion, our results establish that human colorectal cancer lines are representative of the main subtypes of primary tumors at the genomic level, further validating their utility as tools to investigate colorectal cancer biology and drug responses.

Journal ArticleDOI
TL;DR: Results indicate that doxorubicin may be used not only as a direct cytotoxic drug against tumor cells, but also as a potent immunomodulatory agent that selectively impairs MDSC-induced immunosuppression, thereby fostering the efficacy of T-cell-based immunotherapy.
Abstract: Myeloid-derived suppressor cells (MDSC) expand in tumor-bearing hosts and play a central role in cancer immune evasion by inhibiting adaptive and innate immunity. They therefore represent a major obstacle for successful cancer immunotherapy. Different strategies have thus been explored to deplete and/or inactivate MDSC in vivo. Using a murine mammary cancer model, we demonstrated that doxorubicin selectively eliminates MDSC in the spleen, blood and tumor beds. Furthermore, residual MDSC from doxorubicin-treated mice exhibited impaired suppressive function. Importantly, the frequency of CD4+ and CD8+ T lymphocytes and consequently the effector lymphocytes or natural killer (NK) to suppressive MDSC ratios were significantly increased following doxorubicin treatment of tumor-bearing mice. In addition, the proportion of natural killer (NK) and cytotoxic T cell (CTL) expressing perforin and granzyme B and of CTL producing IFNγ was augmented by doxorubicin administration. Of therapeutic relevance, this drug efficiently combined with Th1 or Th17 lymphocytes to suppress tumor development and metastatic disease. MDSC isolated from patients with different types of cancer were also sensitive to doxorubicin-mediated cytotoxicity in vitro. These results thus indicate that doxorubicin may be used not only as a direct cytotoxic drug against tumor cells, but also as a potent immunomodulatory agent that selectively impairs MDSC-induced immunosuppression, thereby fostering the efficacy of T cell-based immunotherapy.

Journal ArticleDOI
TL;DR: A bank of transplantable patient-derived prostate cancer xenografts are established that capture the biologic and molecular heterogeneity currently confounding prognostication and therapy development and predict that these next-generation models will be transformative for advancing mechanistic understanding of disease progression, response to therapy, and personalized oncology.
Abstract: Standardized and reproducible preclinical models that recapitulate the dynamics of prostate cancer are urgently needed. We established a bank of transplantable patient-derived prostate cancer xenografts that capture the biologic and molecular heterogeneity currently confounding prognostication and therapy development. Xenografts preserved the histopathology, genome architecture, and global gene expression of donor tumors. Moreover, their aggressiveness matched patient observations, and their response to androgen withdrawal correlated with tumor subtype. The panel includes the first xenografts generated from needle biopsy tissue obtained at diagnosis. This advance was exploited to generate independent xenografts from different sites of a primary site, enabling functional dissection of tumor heterogeneity. Prolonged exposure of adenocarcinoma xenografts to androgen withdrawal led to castration-resistant prostate cancer, including the first-in-field model of complete transdifferentiation into lethal neuroendocrine prostate cancer. Further analysis of this model supports the hypothesis that neuroendocrine prostate cancer can evolve directly from adenocarcinoma via an adaptive response and yielded a set of genes potentially involved in neuroendocrine transdifferentiation. We predict that these next-generation models will be transformative for advancing mechanistic understanding of disease progression, response to therapy, and personalized oncology.

Journal ArticleDOI
TL;DR: Recent advances in understanding of T-cell migration in solid cancer and immunotherapy based on the adoptive transfer of natural or genetically engineered tumor-specific T cells are summarized and new strategies that may enhance the trafficking of these cells are discussed, leading to effective eradication of solid cancers and metastases.
Abstract: T cells are a crucial component of the immune response to infection and cancer. In addition to coordinating immunity in lymphoid tissue, T cells play a vital role at the disease site, which relies on their efficient and specific trafficking capabilities. The process of T-cell trafficking is highly dynamic, involving a series of distinct processes, which include rolling, adhesion, extravasation, and chemotaxis. Trafficking of T cells to the tumor microenvironment is critical for the success of cancer immunotherapies such as adoptive cellular transfer. Although this approach has achieved some remarkable responses in patients with advanced melanoma and hematologic malignancy, the success against solid cancers has been more moderate. One of the major challenges for adoptive immunotherapy is to be able to effectively target a higher frequency of T cells to the tumor microenvironment, overcoming hurdles associated with immunosuppression and aberrant vasculature. This review summarizes recent advances in our understanding of T-cell migration in solid cancer and immunotherapy based on the adoptive transfer of natural or genetically engineered tumor-specific T cells and discusses new strategies that may enhance the trafficking of these cells, leading to effective eradication of solid cancer and metastases.

Journal ArticleDOI
TL;DR: This paper showed that myc oncoproteins induce genes driving aerobic glycolysis, including lactate dehydrogenase-A that generates lactate, and that elevated MCT1 levels are manifest in premalignant and neoplastic Eμ-Myc transgenic B cells and in human malignancies with myc or MYCN involvement.
Abstract: Myc oncoproteins induce genes driving aerobic glycolysis, including lactate dehydrogenase-A that generates lactate. Here, we report that Myc controls transcription of the lactate transporter SLC16A1/MCT1 and that elevated MCT1 levels are manifest in premalignant and neoplastic Eμ-Myc transgenic B cells and in human malignancies with MYC or MYCN involvement. Notably, disrupting MCT1 function leads to an accumulation of intracellular lactate that rapidly disables tumor cell growth and glycolysis, provoking marked alterations in glycolytic intermediates, reductions in glucose transport, and in levels of ATP, NADPH, and ultimately, glutathione (GSH). Reductions in GSH then lead to increases in hydrogen peroxide, mitochondrial damage, and ultimately, cell death. Finally, forcing glycolysis by metformin treatment augments this response and the efficacy of MCT1 inhibitors, suggesting an attractive combination therapy for MYC/MCT1-expressing malignancies.

Journal ArticleDOI
TL;DR: In models of high-grade serous ovarian cancer (HGS-OVCa), CDK12 attenuation was sufficient to confer sensitivity to PARP1/2 inhibition, suppression of DNA repair via homologous recombination, and reduced expression of BRCA1.
Abstract: Small-molecule inhibitors of PARP1/2, such as olaparib, have been proposed to serve as a synthetic lethal therapy for cancers that harbor BRCA1 or BRCA2 mutations. Indeed, in clinical trials, PARP1/2 inhibitors elicit sustained antitumor responses in patients with germline BRCA gene mutations. In hypothesizing that additional genetic determinants might direct use of these drugs, we conducted a genome-wide synthetic lethal screen for candidate olaparib sensitivity genes. In support of this hypothesis, the set of identified genes included known determinants of olaparib sensitivity, such as BRCA1, RAD51, and Fanconi's anemia susceptibility genes. In addition, the set included genes implicated in established networks of DNA repair, DNA cohesion, and chromatin remodeling, none of which were known previously to confer sensitivity to PARP1/2 inhibition. Notably, integration of the list of candidate sensitivity genes with data from tumor DNA sequencing studies identified CDK12 deficiency as a clinically relevant biomarker of PARP1/2 inhibitor sensitivity. In models of high-grade serous ovarian cancer (HGS-OVCa), CDK12 attenuation was sufficient to confer sensitivity to PARP1/2 inhibition, suppression of DNA repair via homologous recombination, and reduced expression of BRCA1. As one of only nine genes known to be significantly mutated in HGS-OVCa, CDK12 has properties that should confirm interest in its use as a biomarker, particularly in ongoing clinical trials of PARP1/2 inhibitors and other agents that trigger replication fork arrest.

Journal ArticleDOI
TL;DR: It is found that DMSO reacted with the platinum complexes, inhibited their cytotoxicity and their ability to initiate cell death, rendering a substantial portion of the literature on cisplatin uninterpretable.
Abstract: This study calls into question the conclusions of many preclinical studies using platinum drugs dissolved in DMSO, which was discovered to greatly attenuate the cytotoxic properties of these drugs

Journal ArticleDOI
TL;DR: It is concluded that loss of NF1 is common in cutaneous melanoma and is associated with RAS activation, MEK-dependence, and resistance to RAF inhibition.
Abstract: Melanoma is a disease characterized by lesions that activate ERK. Although 70% of cutaneous melanomas harbor activating mutations in the BRAF and NRAS genes, the alterations that drive tumor progression in the remaining 30% are largely undefined. Vemurafenib, a selective inhibitor of RAF kinases, has clinical utility restricted to BRAF-mutant tumors. MEK inhibitors, which have shown clinical activity in NRAS-mutant melanoma, may be effective in other ERK pathway-dependent settings. Here, we investigated a panel of melanoma cell lines wild type for BRAF and NRAS to determine the genetic alteration driving their transformation and their dependence on ERK signaling in order to elucidate a candidate set for MEK inhibitor treatment. A cohort of the BRAF/RAS wild type cell lines with high levels of RAS-GTP had loss of NF1, a RAS GTPase activating protein. In these cell lines, the MEK inhibitor PD0325901 inhibited ERK phosphorylation, but also relieved feedback inhibition of RAS, resulting in induction of pMEK and a rapid rebound in ERK signaling. In contrast, the MEK inhibitor trametinib impaired the adaptive response of cells to ERK inhibition, leading to sustained suppression of ERK signaling and significant antitumor effects. Notably, alterations in NF1 frequently co-occurred with RAS and BRAF alterations in melanoma. In the setting of BRAF(V600E), NF1 loss abrogated negative feedback on RAS activation, resulting in elevated activation of RAS-GTP and resistance to RAF, but not MEK, inhibitors. We conclude that loss of NF1 is common in cutaneous melanoma and is associated with RAS activation, MEK-dependence, and resistance to RAF inhibition.

Journal ArticleDOI
TL;DR: Preclinical data support the use of this innovative biologic platform of immunotherapy for solid tumors, using neuroblastoma as a tumor model and an oncolytic virus armed with the chemokine RANTES and the cytokine IL15 to facilitate migration and survival of CAR-T cells.
Abstract: The clinical efficacy of chimeric antigen receptor (CAR)-redirected T cells remains marginal in solid tumors compared to leukemias. Failures have been attributed to insufficient T-cell migration and to the highly immunosuppressive milieu of solid tumors. To overcome these obstacles, we have combined CAR-T cells with an oncolytic virus (OV) armed with the chemokine RANTES and the cytokine IL-15, reasoning that the modified OV will have both a direct lytic effect on infected malignant cells and facilitate migration and survival of CAR-T cells. Using neuroblastoma (NB) as a tumor model we found that the adenovirus Ad5Δ24 exerted a potent, dose-dependent, cytotoxic effect on tumor cells, while CAR-T cells specific for the tumor antigen GD2 (GD2.CAR-T cells) were not damaged. When used in combination, Ad5Δ24 directly accelerated the caspase pathways in tumor cells exposed to CAR-T cells, while the intratumoral release of both RANTES and IL-15 attracted CAR-T cells and promoted their local survival, respectively, increasing the overall survival of tumor bearing mice. These preclinical data support the use of this innovative biological platform of immunotherapy for solid tumors.

Journal ArticleDOI
TL;DR: CSF-1R blockade with PLX3397 improved the efficacy of ACT immunotherapy by inhibiting the intratumoral accumulation of immunosuppressive macrophages.
Abstract: Colony stimulating factor-1 (CSF-1) recruits tumor-infiltrating myeloid cells (TIMs) that suppress tumor immunity, including M2 macrophages and myeloid derived suppressor cells (MDSC). The CSF-1 receptor (CSF-1R) is a tyrosine kinase that is targetable by small molecule inhibitors such as PLX3397. In this study, we used a syngeneic mouse model of BRAFV600E-driven melanoma to evaluate the ability of PLX3397 to improve the efficacy of adoptive T-cell therapy (ACT). In this model, we found that combined treatment produced superior anti-tumor responses compared with single treatments. In mice receiving the combined treatment, a dramatic reduction of TIMs and a skewing of MHCIIlow to MHCIIhi macrophages was observed. Further, mice receiving the combined treatment exhibited an increase in tumor-infiltrating lymphocytes (TILs) and T cells, as revealed by real-time imaging in vivo. In support of these observations, TILs from these mice released higher levels of IFN-γ. In conclusion, CSF-1R blockade with PLX3397 improved the efficacy of ACT immunotherapy by inhibiting the intratumoral accumulation of immune suppressive macrophages.

Journal ArticleDOI
TL;DR: A novel small-molecule inhibitor of the MDM2-p53 interaction, SAR405838 (MI-77301), that has been advanced into phase I clinical trials, effectively activates wild-type p53 in vitro and in xenograft tumor tissue of leukemia and solid tumors, leading to p53-dependent cell-cycle arrest and/or apoptosis.
Abstract: Blocking the oncoprotein murine double minute 2 (MDM2)-p53 protein-protein interaction has long been considered to offer a broad cancer therapeutic strategy, despite the potential risks of selecting tumors harboring p53 mutations that escape MDM2 control. In this study, we report a novel small-molecule inhibitor of the MDM2-p53 interaction, SAR405838 (MI-77301), that has been advanced into phase I clinical trials. SAR405838 binds to MDM2 with K(i) = 0.88 nmol/L and has high specificity over other proteins. A cocrystal structure of the SAR405838:MDM2 complex shows that, in addition to mimicking three key p53 amino acid residues, the inhibitor captures additional interactions not observed in the p53-MDM2 complex and induces refolding of the short, unstructured MDM2 N-terminal region to achieve its high affinity. SAR405838 effectively activates wild-type p53 in vitro and in xenograft tumor tissue of leukemia and solid tumors, leading to p53-dependent cell-cycle arrest and/or apoptosis. At well-tolerated dose schedules, SAR405838 achieves either durable tumor regression or complete tumor growth inhibition in mouse xenograft models of SJSA-1 osteosarcoma, RS4;11 acute leukemia, LNCaP prostate cancer, and HCT-116 colon cancer. Remarkably, a single oral dose of SAR405838 is sufficient to achieve complete tumor regression in the SJSA-1 model. Mechanistically, robust transcriptional upregulation of PUMA induced by SAR405838 results in strong apoptosis in tumor tissue, leading to complete tumor regression. Our findings provide a preclinical basis upon which to evaluate SAR405838 as a therapeutic agent in patients whose tumors retain wild-type p53.

Journal ArticleDOI
TL;DR: The first role for a long noncoding RNA (lncRNA) in DSB repair in prostate cancer is described, identified as PCAT-1, a prostate cancer outlier lncRNA, which regulates cell response to genotoxic stress.
Abstract: Impairment of double-stranded DNA break (DSB) repair is essential to many cancers. However, although mutations in DSB repair proteins are common in hereditary cancers, mechanisms of impaired DSB repair in sporadic cancers remain incompletely understood. Here, we describe the first role for a long noncoding RNA (lncRNA) in DSB repair in prostate cancer. We identify PCAT-1 , a prostate cancer outlier lncRNA, which regulates cell response to genotoxic stress. PCAT-1 expression produces a functional deficiency in homologous recombination through its repression of the BRCA2 tumor suppressor, which, in turn, imparts a high sensitivity to small-molecule inhibitors of PARP1 . These effects reflected a posttranscriptional repression of the BRCA2 3′UTR by PCAT-1 . Our observations thus offer a novel mechanism of “BRCAness” in sporadic cancers. Cancer Res; 74(6); 1651–60. ©2014 AACR .

Journal ArticleDOI
TL;DR: It is shown that optical metabolic imaging of organoids derived from primary tumors can predict the therapeutic response of xenografts and measure antitumor drug responses in human tumor-derived organoids.
Abstract: There is a need for technologies to predict the efficacy of cancer treatment in individual patients. Here, we show that optical metabolic imaging of organoids derived from primary tumors can predict the therapeutic response of xenografts and measure antitumor drug responses in human tumor-derived organoids. Optical metabolic imaging quantifies the fluorescence intensity and lifetime of NADH and FAD, coenzymes of metabolism. As early as 24 hours after treatment with clinically relevant anticancer drugs, the optical metabolic imaging index of responsive organoids decreased (P < 0.001) and was further reduced when effective therapies were combined (P < 5 × 10(-6)), with no change in drug-resistant organoids. Drug response in xenograft-derived organoids was validated with tumor growth measurements in vivo and staining for proliferation and apoptosis. Heterogeneous cellular responses to drug treatment were also resolved in organoids. Optical metabolic imaging shows potential as a high-throughput screen to test the efficacy of a panel of drugs to select optimal drug combinations. Cancer Res; 74(18); 5184-94. ©2014 AACR.

Journal ArticleDOI
TL;DR: The finding that common expression of LSECtin in melanoma cells engenders a mechanism of immune escape, with implications for novel immunotherapeutic combination strategies is reported.
Abstract: Therapeutic antibodies that target T-cell co-inhibitory molecules display potent antitumor effects in multiple types of cancer. LSECtin is a cell surface lectin of the DC-SIGN family expressed in dendritic cells that inhibits T-cell responses. LSECtin limits T-cell activity in infectious disease, but it has not been studied in cancer. Here we report the finding that LSECtin is expressed commonly in melanomas where it blunts tumor-specific T-cell responses. When expressed in B16 melanoma cells, LSECtin promoted tumor growth, whereas its blockade slowed tumor growth in either wild-type or LSECtin-deficient mice. The tumor-promoting effects of LSECtin were abrogated in Rag1 −/− mice or in response to CD4 + or CD8 + T-cell depletion. Mechanistic investigations determined that LSECtin inhibited the proliferation of tumor-specific effector T cells by downregulating the cell cycle kinases CDK2, CDK4, and CDK6. Accordingly, as expressed in B16, tumor cells LSECtin inhibited tumor-specific T-cell responses relying upon proliferation in vitro and in vivo . Notably, LSECtin interacted with the co-regulatory molecule LAG-3, the blockade of which restored IFNγ secretion that was reduced by melanoma-derived expression of LSECtin. Together, our findings reveal that common expression of LSECtin in melanoma cells engenders a mechanism of immune escape, with implications for novel immunotherapeutic combination strategies. Cancer Res; 74(13); 3418–28. ©2014 AACR .

Journal ArticleDOI
TL;DR: It is demonstrated that activation of the cell protective stress response gene NRF2 by KRAS is responsible for its ability to promote drug resistance, and RNAi-mediated silencing ofNRF2 was sufficient to reverse resistance to cisplatin elicited by ectopic expression of oncogenic KRAS in NSCLC cells.
Abstract: Oncogenic KRAS mutations found in 20% to 30% of all non-small cell lung cancers (NSCLC) are associated with chemoresistance and poor prognosis. Here we demonstrate that activation of the cell protective stress response gene NRF2 by KRAS is responsible for its ability to promote drug resistance. RNAi-mediated silencing of NRF2 was sufficient to reverse resistance to cisplatin elicited by ectopic expression of oncogenic KRAS in NSCLC cells. Mechanistically, KRAS increased NRF2 gene transcription through a TPA response element (TRE) located in a regulatory region in exon 1 of NRF2. In a mouse model of mutant KrasG12D-induced lung cancer, we found that suppressing the NRF2 pathway with the chemical inhibitor brusatol enhanced the antitumor efficacy of cisplatin. Cotreatment reduced tumor burden and improved survival. Our findings illuminate the mechanistic details of KRAS-mediated drug resistance and provide a preclinical rationale to improve the management of lung tumors harboring KRAS mutations with NRF2 pathway inhibitors.