scispace - formally typeset
Search or ask a question
Institution

Beijing University of Technology

EducationBeijing, Beijing, China
About: Beijing University of Technology is a education organization based out in Beijing, Beijing, China. It is known for research contribution in the topics: Microstructure & Computer science. The organization has 31929 authors who have published 31987 publications receiving 352112 citations. The organization is also known as: Běijīng Gōngyè Dàxué & Beijing Polytechnic University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a facile hydrothermal route for the preparation of BiOBr-Bi2WO6 mesoporous nanosheet composites (MNCs) in the presence of titanium isopropoxide, Ti(OiPr)4 was reported.
Abstract: Here we report a facile hydrothermal route for the preparation of BiOBr–Bi2WO6 mesoporous nanosheet composites (MNCs) in the presence of titanium isopropoxide, Ti(OiPr)4. High resolution transmission electron microscopy, X-ray diffraction, nitrogen adsorption/desorption analysis and X-ray photoelectron spectroscopy were employed for structural and composition analyses of the MNCs. The photogenerated charge transfer and photocatalytic activity of BiOBr–Bi2WO6 MNCs were investigated by Kelvin probe force microscopy and UV-vis spectroscopy. We propose mechanisms to illustrate how titanium alkoxide induces the formation of mesoporous nanosheet heterostructures and the enhanced photodecomposition efficiency of the dye under low light intensity illumination. Overall, our results suggest that titanium alkoxide is not only strongly involved in the growth of BiOBr (001) facets, but also plays a critical role in the pore evolution of the product. Kelvin probe force microscopy analysis allows us to conclude that the resulting nanocomposites demonstrate high photogenerated charge mobility and a long lifetime. Dye molecules can be rapidly and thoroughly decomposed with the photocatalyst under very low light intensity illumination. The enhanced photocatalytic activity is attributed to well matched band edge positions of BiOBr and Bi2WO6 and the large specific surface area of the MNCs in view of the incorporation of mesopores and the highly exposed BiOBr (001) facet due to the use of Ti(OiPr)4 during the synthesis. The results presented here are expected to make a contribution toward the development of delicate nanocomposites for photocatalytic water purification and solar energy utilization.

114 citations

Journal ArticleDOI
TL;DR: In this paper, a triblock copolymer P123-assisted hydrothermal strategy with bismuth nitrate and ammonium metavanadate as metal source and various bases as pH adjustor was used for the photodegradation of methylene blue (MB) under visible-light irradiation.

114 citations

Journal ArticleDOI
TL;DR: Based on detailed studies on the combination of WC and Co phases, the WC/Co orientation relationship and the atomic correspondence at interfaces, the mechanisms for high toughness in the present nanocrystalline cemented carbides were demonstrated as discussed by the authors.

114 citations

Journal ArticleDOI
TL;DR: A high Cu solubility of 11.8% in single crystal SnSe microbelts synthesized via a facile solvothermal route is reported for the first time.
Abstract: In this study, we, for the first time, report a high Cu solubility of 11.8% in single crystal SnSe microbelts synthesized via a facile solvothermal route. The pellets sintered from these heavily Cu-doped microbelts show a high power factor of 5.57 μW cm−1 K−2 and low thermal conductivity of 0.32 W m−1 K−1 at 823 K, contributing to a high peak ZT of ∼1.41. Through a combination of detailed structural and chemical characterizations, we found that with increasing the Cu doping level, the morphology of the synthesized Sn1−xCuxSe (x is from 0 to 0.118) transfers from rectangular microplate to microbelt. The high electrical transport performance comes from the obtained Cu+ doped state, and the intensive crystal imperfections such as dislocations, lattice distortions, and strains, play key roles in keeping low thermal conductivity. This study fills in the gaps of the existing knowledge concerning the doping mechanisms of Cu in SnSe systems, and provides a new strategy to achieve high thermoelectric performance in SnSe-based thermoelectric materials.

114 citations

Journal ArticleDOI
TL;DR: In this paper, the authors classified water inrush and mud gushing in railway tunnels in view of the conditions of the surrounding rocks and meteorological factors associated with tunnel excavation, and proposed a site-specific treatment method.
Abstract: Water inrush and mud gushing are one of the biggest hazards in tunnel construction. Unfavorable geological sections can be observed in almost all railway tunnels under construction or to be constructed, and vary in extent. Furthermore, due to the different heights of mountains and the lengths of tunnels, the locations of the unfavorable geological sections cannot be fully determined before construction, which increases the risk of water inrush and mud gushing. Based on numerous cases of water inrush and mud gushing in railway tunnels, the paper tries to classify water inrush and mud gushing in railway tunnels in view of the conditions of the surrounding rocks and meteorological factors associated with tunnel excavation. In addition, the causes of water inrush and mud gushing in combination of macro- and micro-mechanisms are summarized, and site-specific treatment method is put forward. The treatment methods include choosing a method of advance geological forecast according to risk degrees of different sections in the tunnel, determining the items of predictions, and choosing the appropriate methods, i.e. draining-oriented method, blocking-oriented method or draining-and-blocking method. The treatment technologies of railway water inrush and mud gushing are also summarized, including energy relief and pressure relief technology, advance grouting technology, and advance jet grouting technology associated with their key technical features and applicable conditions. The results in terms of treatment methods can provide reference to the prevention and treatment of tunnel water inrush and mud gushing.

114 citations


Authors

Showing all 32228 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Pulickel M. Ajayan1761223136241
James M. Tour14385991364
Dacheng Tao133136268263
Lei Zhang130231286950
Hong-Cai Zhou11448966320
Xiaodong Li104130049024
Lin Li104202761709
Ming Li103166962672
Wenjun Zhang9697638530
Lianzhou Wang9559631438
Miroslav Krstic9595542886
Zhiguo Yuan9363328645
Xiang Gao92135942047
Xiao-yan Li8552831861
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

95% related

Tsinghua University
200.5K papers, 4.5M citations

94% related

University of Science and Technology of China
101K papers, 2.4M citations

92% related

Northeastern University
58.1K papers, 1.7M citations

91% related

Zhejiang University
183.2K papers, 3.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023124
2022611
20213,573
20203,341
20193,075
20182,523