scispace - formally typeset
Search or ask a question
Institution

Boston Children's Hospital

HealthcareBoston, Massachusetts, United States
About: Boston Children's Hospital is a healthcare organization based out in Boston, Massachusetts, United States. It is known for research contribution in the topics: Population & Medicine. The organization has 165409 authors who have published 215589 publications receiving 6885627 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Improved understanding of the pathogenesis of SLE is driving a renewed interest in targeted therapy, and researchers are now on the verge of developing targeted immunotherapy directed at treating either specific organ system involvement or specific subsets of patients with SLE.
Abstract: In this Review, Tsokos et al. describe recent advances in our understanding of systemic lupus erythematosus (SLE) that are driving repurposing of existing drugs as well as development of new treatments. Cytokines, tolerance pathways, local tissue mediators, and epigenetic mechanisms all show promise as novel targeted therapies that could lead to individualized care in SLE.

766 citations

Journal ArticleDOI
TL;DR: The matrix metalloproteinase (MMP) family of enzymes is comprised of critically important extracellular matrix remodeling proteases whose activity has been implicated in a number of key normal and pathologic processes.
Abstract: The matrix metalloproteinase (MMP) family of enzymes is comprised of critically important extracellular matrix remodeling proteases whose activity has been implicated in a number of key normal and pathologic processes. The latter include tumor growth, progression, and metastasis as well as the dysregulated angiogenesis that is associated with these events. As a result, these proteases have come to represent important therapeutic and diagnostic targets for the treatment and detection of human cancers. In this review, we summarize the literature that establishes these enzymes as important clinical targets, discuss the complexity surrounding their choice as such, and chronicle the development strategies and outcomes of their clinical testing to date. The status of the MMP inhibitors currently in US Food and Drug Administration approved clinical trials is presented and reviewed. We also discuss the more recent and successful targeting of this enzyme family as diagnostic and prognostic predictors of human cancer, its status, and its stage. This analysis includes a wide variety of human cancers and a number of human sample types including tissue, plasma, serum, and urine.

765 citations

Journal ArticleDOI
TL;DR: It is suggested that IL 12 may possess antiangiogenic properties that account for its tumor-inhibitory effects in vivo, and its mechanisms may be crucial in planning its clinical applications, including a possibility of coadministration with other inhibitors of neovascularization.
Abstract: Background In previous animal studies, interleukin 12 (IL 12) was shown to inhibit the growth of a wide spectrum of tumors in vivo but to have no direct effect on tumor cells in vitro. Also, contrary to the expectation of a T-cell-mediated effect, the antitumor activity of IL 12 was not completely abrogated in tests of T-cell-deficient mice. These observations suggest that IL 12 may possess antiangiogenic properties that account for its tumor-inhibitory effects in vivo. Purpose Our goal was to investigate the hypothesis that IL 12 has antiangiogenic properties. Methods A model of basic fibroblast growth factor-induced corneal neovascularization in mice was used to evaluate the effects of IL 12 and interferon gamma (IFN gamma) on angiogenesis in vivo. Different strains of male mice, e.g., immunocompetent C57BL/6 mice, severe combined immune-deficient (SCID) mice, natural killer cell-deficient beige mice, and T-cell-deficient nude mice, were treated with IL 12 (1 microgram/day) intraperitoneally for 5 consecutive days. The extent of neovascularization in response to a basic fibroblast growth factor pellet and the inhibition of neovascularization by IL 12 or IFN gamma were assessed by measuring the maximal vessel length and the corneal circumference involved in new blood vessel formation. The antitumor activities of IL 12 and of the angiogenesis inhibitor AGM-1470 were evaluated in Lewis lung carcinoma-bearing mice. In vitro proliferation studies were performed on bovine capillary endothelial cells, mouse pancreatic islet endothelial cells, and mouse hemangioendothelioma cells. Results IL 12 treatment almost completely inhibited corneal neovascularization in C57BL/6, SCID, and beige mice. This potent suppression of angiogenesis was prevented by the administration of IFN gamma-neutralizing antibodies, suggesting that the suppression was mediated through IFN gamma. In addition, the administration of IFN gamma reproduced the antiangiogenic effects observed during treatment with IL 12. Treatment with IL 12 and AGM-1470 combined did not increase toxicity and showed a trend toward enhanced antitumor efficacy in Lewis lung carcinoma-bearing mice. Conclusions IL 12 strongly inhibits neovascularization. This effect is not mediated by a specific cell type of the immune system. Instead, IL 12 has been shown to induce IFN gamma, which, in turn, appears to play a critical role as a mediator of the antiangiogenic effects of IL 12. Implications Recognition of the mechanisms of the antiangiogenic properties of IL 12 may be crucial in planning its clinical applications, including a possibility of coadministration with other inhibitors of neovascularization.

764 citations

Journal Article
TL;DR: It is found that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts, and a diversity of signatures among Polycomb targets that include a subset with paused polymerase.
Abstract: Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function.

763 citations

Journal ArticleDOI
TL;DR: It is proposed that breakage of replication forks in stressed cells that are deficient in homologous recombination induces an aberrant repair process with features of break-induced replication (BIR) that will anneal with microhomology on any single-stranded DNA nearby, priming low-processivity polymerization with multiple template switches generating complex rearrangements, and eventual re-establishment of processive replication.
Abstract: Chromosome structural changes with nonrecurrent endpoints associated with genomic disorders offer windows into the mechanism of origin of copy number variation (CNV). A recent report of nonrecurrent duplications associated with Pelizaeus-Merzbacher disease identified three distinctive characteristics. First, the majority of events can be seen to be complex, showing discontinuous duplications mixed with deletions, inverted duplications, and triplications. Second, junctions at endpoints show microhomology of 2–5 base pairs (bp). Third, endpoints occur near pre-existing low copy repeats (LCRs). Using these observations and evidence from DNA repair in other organisms, we derive a model of microhomology-mediated break-induced replication (MMBIR) for the origin of CNV and, ultimately, of LCRs. We propose that breakage of replication forks in stressed cells that are deficient in homologous recombination induces an aberrant repair process with features of break-induced replication (BIR). Under these circumstances, single-strand 3′ tails from broken replication forks will anneal with microhomology on any single-stranded DNA nearby, priming low-processivity polymerization with multiple template switches generating complex rearrangements, and eventual re-establishment of processive replication.

763 citations


Authors

Showing all 165661 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Frederick E. Shelton3271485295883
Robert Langer2812324326306
Graham A. Colditz2611542256034
Frank B. Hu2501675253464
George M. Whitesides2401739269833
Eugene Braunwald2301711264576
Ralph B. D'Agostino2261287229636
Mark J. Daly204763304452
Eric B. Rimm196988147119
Virginia M.-Y. Lee194993148820
Bernard Rosner1901162147661
Stuart H. Orkin186715112182
Mark Hallett1861170123741
Ralph Weissleder1841160142508
Network Information
Related Institutions (5)
Baylor College of Medicine
94.8K papers, 5M citations

94% related

University of Texas Health Science Center at Houston
42.5K papers, 2.1M citations

93% related

Mayo Clinic
169.5K papers, 8.1M citations

93% related

University of Colorado Denver
57.2K papers, 2.5M citations

93% related

Icahn School of Medicine at Mount Sinai
76K papers, 3.7M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202380
2022447
202119,544
202016,558
201913,868
201812,020