scispace - formally typeset
Search or ask a question
Institution

Boston University

EducationBoston, Massachusetts, United States
About: Boston University is a education organization based out in Boston, Massachusetts, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 48688 authors who have published 119622 publications receiving 6276020 citations. The organization is also known as: BU & Boston U.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors proposed a new framework that centers on the concept of progressive N limitation (PNL) for studying the interactions between C and N in terrestrial ecosystems, and examined conditions under which PNL may or may not constrain net primary production and carbon sequestration in terrestrial ecosystem.
Abstract: A highly controversial issue in global biogeochemistry is the regulation of terrestrial carbon (C) sequestration by soil nitrogen (N) availability. This controversy translates into great uncertainty in predicting future global terrestrial C sequestration. We propose a new framework that centers on the concept of progressive N limitation (PNL) for studying the interactions between C and N in terrestrial ecosystems. In PNL, available soil N becomes increasingly limiting as C and N are sequestered in long-lived plant biomass and soil organic matter. Our analysis focuses on the role of PNL in regulating ecosystem responses to rising atmospheric carbon dioxide concentration, but the concept applies to any perturbation that initially causes C and N to accumulate in organic forms. This article examines conditions under which PNL may or may not constrain net primary production and C sequestration in terrestrial ecosystems. While the PNL-centered framework has the potential to explain diverse experimental...

1,196 citations

Book ChapterDOI
TL;DR: In this article, a thought experiment is offered which analyses how a system as a whole can correct errors of hypothesis testing in a fluctuating environment when none of the system's components, taken in isolation, even knows that an error has occurred.
Abstract: This article provides a self-contained introduction to my work from a recent perspective. A thought experiment is offered which analyses how a system as a whole can correct errors of hypothesis testing in a fluctuating environment when none of the system’s components, taken in isolation, even knows that an error has occurred. This theme is of general philosophical interest: How can intelligence or knowledge be ascribed to a system as a whole but not to its parts? How can an organism’s adaptive mechanisms be stable enough to resist environmental fluctuations which do not alter its behavioral success, but plastic enough to rapidly change in response to environmental demands that do alter its behavioral success? To answer such questions, we must identify the functional level on which a system’s behavioral success is defined.

1,195 citations

Journal ArticleDOI
22 Nov 1999-Oncogene
TL;DR: An understanding of the role of Rel/NF-κB transcription factors in controlling apoptosis may lead to the development of therapeutics for a wide variety of human diseases, including neurodegenerative and immune diseases, and cancer.
Abstract: Apoptosis is a physiological process critical for organ development, tissue homeostasis, and elimination of defective or potentially dangerous cells in complex organisms. Apoptosis can be initiated by a wide variety of stimuli, which activate a cell suicide program that is constitutively present in most vertebrate cells. In diverse cell types, Rel/NF-kappaB transcription factors have been shown to have a role in regulating the apoptotic program, either as essential for the induction of apoptosis or, perhaps more commonly, as blockers of apoptosis. Whether Rel/NF-kappaB promotes or inhibits apoptosis appears to depend on the specific cell type and the type of inducer. An understanding of the role of Rel/NF-kappaB transcription factors in controlling apoptosis may lead to the development of therapeutics for a wide variety of human diseases, including neurodegenerative and immune diseases, and cancer.

1,194 citations

Journal ArticleDOI
12 May 2010-JAMA
TL;DR: Although CLU and PICALM were confirmed to be associated with AD in this independent sample, they did not improve the ability of a model that included age, sex, and APOE to predict incident AD.
Abstract: Context Genome-wide association studies (GWAS) have recently identified CLU, PICALM, and CR1 as novel genes for late-onset Alzheimer disease (AD). Objectives To identify and strengthen additional loci associated with AD and confirm these in an independent sample and to examine the contribution of recently identified genes to AD risk prediction in a 3-stage analysis of new and previously published GWAS on more than 35 000 persons (8371 AD cases). Design, Setting, and Participants In stage 1, we identified strong genetic associations (P < 10−3) in a sample of 3006 AD cases and 14 642 controls by combining new data from the population-based Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (1367 AD cases [973 incident]) with previously reported results from the Translational Genomics Research Institute and the Mayo AD GWAS. We identified 2708 single-nucleotide polymorphisms (SNPs) with P<10−3. In stage 2, we pooled results for these SNPs with the European AD Initiative (2032 cases and 5328 controls) to identify 38 SNPs (10 loci) with P<10−5. In stage 3, we combined data for these 10 loci with data from the Genetic and Environmental Risk in AD consortium (3333 cases and 6995 controls) to identify 4 SNPs with P<1.7×10−8. These 4 SNPs were replicated in an independent Spanish sample (1140 AD cases and 1209 controls). Genome-wide association analyses were completed in 2007-2008 and the meta-analyses and replication in 2009. Main Outcome Measure Presence of Alzheimer disease. Results Two loci were identified to have genome-wide significance for the first time: rs744373 near BIN1 (odds ratio [OR],1.13; 95% confidence interval [CI],1.06-1.21 per copy of the minor allele; P = 1.59×10−11) and rs597668 near EXOC3L2/BLOC1S3/MARK4 (OR, 1.18; 95% CI, 1.07-1.29; P = 6.45×10−9). Associations of these 2 loci plus the previously identified loci CLU and PICALM with AD were confirmed in the Spanish sample (P < .05). However, although CLU and PICALM were confirmed to be associated with AD in this independent sample, they did not improve the ability of a model that included age, sex, and APOE to predict incident AD (improvement in area under the receiver operating characteristic curve from 0.847 to 0.849 in the Rotterdam Study and 0.702 to 0.705 in the Cardiovascular Health Study). Conclusions Two genetic loci for AD were found for the first time to reach genome-wide statistical significance. These findings were replicated in an independent population. Two recently reported associations were also confirmed. These loci did not improve AD risk prediction. While not clinically useful, they may implicate biological pathways useful for future research.

1,194 citations


Authors

Showing all 49233 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Robert Langer2812324326306
Meir J. Stampfer2771414283776
Ronald C. Kessler2741332328983
JoAnn E. Manson2701819258509
Albert Hofman2672530321405
George M. Whitesides2401739269833
Paul M. Ridker2331242245097
Eugene Braunwald2301711264576
Ralph B. D'Agostino2261287229636
David J. Hunter2131836207050
Daniel Levy212933194778
Christopher J L Murray209754310329
Tamara B. Harris2011143163979
André G. Uitterlinden1991229156747
Network Information
Related Institutions (5)
Columbia University
224K papers, 12.8M citations

99% related

Yale University
220.6K papers, 12.8M citations

98% related

University of Washington
305.5K papers, 17.7M citations

98% related

Harvard University
530.3K papers, 38.1M citations

98% related

Johns Hopkins University
249.2K papers, 14M citations

98% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023223
2022810
20216,943
20206,837
20196,120
20185,593